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Development and Evaluation of Active/Lighting Marker in Turbidity and Illumination Variation
Environments
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The development of Autonomous Underwater Vehicles (AUVs) is essential for the sea bed
resources exploration. Vision-based underwater vehicle to robustly detect the underwater tar-
get especially in high turbid and low illumination. Visual-based underwater vehicle using 3D
perception based move on sensing (3D-MoS) system with dual-eye cameras and 3D marker has
been developed. We designed and constructed the active/lighting 3D marker to improve the
recognition accuracy for the real time 3D pose estimation. The recognition experiments were
conducted in an indoor pool against different turbidity and illumination by adjusting the LED’s
brightness under day and night environments. The purpose of this research is to choose appro-
priate currents of LED that was installed in the active/lighting 3D marker for real-time pose
recognition against different turbidity and illumination.
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Fig.1 Overview of ROV (a) Front view (b) Side view (c)
Top view (d) Back view
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Fig.3 Underwater target and GA searching area
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Fig.4 Active/Lighting 3D marker
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Fig.5 Circuit for active 3D marker
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Fig.7 Coordinate system provided in the experiments

BRI — & 7 VK BREE R (Milwaukee, MW-700) % T,
BEIiE (milli Ampere, mA) 137 VX )L~ /LF A —4 (Rt
<Y =Y —, MT-2060) & WV TEHIIL72. Fig. 8 @ (A) I
R—=2 T VEEY Y%, (B) IZR—F T VPiIKERES &R
WAL 60 [s) OFHIEE LV, EEEOHEIIIAM, BE,
AR, MR A - O B A A LTz

(Y (®)

Fig.8 Measuring instrument ((A) Portable monitoring
sensor TDM500, (B) Portable Waterproof LUX
Meter MW-700).
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Fig.9 Average fitness value and standard deviation for different currents of LEDs inside the active marker in turbid
water ((A) 0 [FTU], (B) 4 [FTU], (C) 8 [FTU], (D) 12 [FTU]).

@: Hue value defined as red® : Hue value defined as gregn

@: Hue value defined as bluQ: Hue value defined as othgrs

Fig.10 Left and right cameras images(Top) and results of brightness(Middle) and hue(Bottom) distributions for
different LED’s current of balls((I) 0 [mA],(Il) 10 [mA], (IT) 16 [mA]) in 8 [FTU] and 400 [Ix]. In the top
images, dotted circles show the 3D marker’s posture estimated by GA. In brightness distribution(Middle),
more pixel become white, more brightness become high. In hue distribution(Bottom), red, green, blue and
white dots are defined as red, green, blue and others in our system.
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Fig.11 Fitness value distribution between x-direction and y-direction for different LED’s current of balls((I) 0 [mA],(T
I) 10 [mA], (I) 16 [mA]) in 8 [FTU] and 400 [Ix] at the distance 600 [mm] between ROV and 3D marker.
Fiqz 18 the biggest fitness value in each fitness value distribution.
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