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Abstract

There are two principal methods to derivate motion of equation of robot manipulator, which are Newton-Euler (NE)

method and Lagrange method. NE method treats each linkage as rigid linkage and it is possible to calculate internal force

and torque not generating real motion of robot manipulator, which is a merit of NE method that Lagrange method does

not have. So far, NE method has been applied to a robot of open-loop serial-linkage structure. However, the adaptation

has been limited to a motion without contact of hand with environment. Although robot task based on contact with

environment, for example assembly task, grinding task, is important, it is not formulated in the way of NE method. So, this

paper proposes iterative calculation method for representing constraint dynamical motion of robot manipulator utilizing

inverse dynamic calculation method-NE method, leading and enabling the forward dynamics calculation of constraint

motions to be dealt recursively through proposed extended NE method for constraint motions, with no use of explicit

representation of equation of motions. We applied this method to 2-linkage and 3-linkage manipulators and evaluated its

validity by numerical simulations. Also, we calculated inertia force acting on each linkage during constraint motion and

evaluated validity of those values.
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1. 緒 言

マニピュレータの運動方程式の２つの主要な導出法として Lagrange法とNewton-Euler法（NE法）がある（Brady,

et al., 1982）．NE法は衛星のような開鎖のツリー構造（Hooker and Margulies, 1965）や，人体のような生物学的構

造（Stepanenko and Vukobratovic, 1976），（Orin, et al., 1979）に適用されてきたが，計算量が多いため実時間での使

用は困難であった．そこで 1980年に計算量を減らすために再公式化され（Luh, et al., 1980），1982年にWalker，

Orinによって NE法を用いた順動力学問題の解法とその有効性が示された（Walker and Orin, 1982）．その後，NE

法は非剛性マニピュレータのモデルへの応用（Huang and Lee, 1988）等，様々な所で利用されている．

NE法はそれぞれのリンクを剛体として扱い，ロボットの実際の運動を生成しない内力，内部トルクの計算が可

能であるという Lagrange法には無いメリットがある．このメリットは，ヒューマノイドロボットの足の衝突・拘

束運動時の各リンク間に働く力・トルクの計算等への応用が考えられる．

従来の NE法は開ループの直鎖リンク構造のロボットに適用されてきたが，ハンド部が外界と接触しない運動に

限られていた．ロボットによる組立作業やグラインディング作業など，外界との接触を前提にした作業はロボット

Iterative calculation method for constraint motion by extended Newton-Euler method and 
application for forward dynamics 

 
*1,*2 Graduate School of Natural Science and Technology, Okayama University 

3-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan 

拡張 Newton-Euler 法による拘束運動繰り返し計算と 
順動力学解法への応用

No.13-00861 [DOI: 10.1299/transjsme.2014dr0208] 
*1 岡山大学大学院自然科学研究科（〒700-8530 岡山県岡山市北区津島中 3-1-1） 
*2 正員，岡山大学大学院自然科学研究科 
E-mail of corresponding author: minami-m@cc.okayama-u.ac.jp 

Jumpei NISHIGUCHI*1, Mamoru MINAMI*2 and Akira YANOU*2



2

Nishiguchi, Minami and Yanou, Transactions of the JSME (in Japanese), Vol.80, No.815 (2014)

© 2014 The Japan Society of Mechanical Engineers[DOI: 10.1299/transjsme.2014dr0208]

の作業として重要であるにも拘らず，NE法として定式化されていない．

ロボットが外部環境との接触拘束する場合のダイナミクスを解く問題は，（長谷川他, 2012）に解説されている．

その中で CLP法（Anitescu and Potra, 2002）は反復解法により拘束力を算出しており，反復回数が少ないと残留

誤差が発生する問題があること，また ABA 法（Featherstone and Orin, 2000）は関節拘束が厳密に満たされるもの

の開リンク構造に限定され拘束運動には適用できないことが示されている．この点に対し本報で提案する拡張 NE

法は拘束条件が厳密に満たされるという点で（中村，山根，2000），（Featherstone and Orin, 2000）らの研究と同

じであるが，Hemami（Hemami and Wyman, 1979）が行ったように代入法により拘束力を求めること（Minami, et

al., 1997）で NE法の繰り返し計算に拘束力を含めることができるように工夫した．さらに拡張 NE法の逆動力学

計算を順動力学問題に応用する方法も提案する．また外部環境から接触部に作用する力として従来から議論され

ている抗力だけではなく摩擦力を含む定式化になっている点も従来手法とは異なる特徴である．

2. 拘束運動時の Newton-Euler法による逆動力学解法

ここでは，変形のない剛体リンクによって構成された直鎖リンク構造のマニピュレータ先端のリンクのみが，変

形のない環境と接触しつつ運動する拘束条件付運動の逆動力学解法について考える．図 1に示すように地面から

手先に抗力 fnと摩擦力 ft の働く n本の剛体リンクを持つ直鎖リンク構造のマニピュレータを考え，リンク i に固

定された座標系 Σi に基づき運動方程式を導出する．Σ0は床に固定された作業座標系である．手先がある拘束面に

拘束されているときの拘束条件は手先の位置ベクトルを rrr(qqq)とし，式（1）として定義できる．

C(rrr(qqq)) = 0 (1)

ここで qqq = [q1, q2, · · · , qn]Tは n×1の関節角度ベクトルである．C(rrr(qqq))は rrr に対し微分可能であることを仮定し

ておく．図 1では，ロボットが接触する環境として床を想定して描いているが，以下は，拘束条件として式 (1)を

前提としており，床拘束に限定された議論ではない．
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Fig. 1 n-link manipulator whose hand position is constraint by non elastic environment, which is a floor in this figure

iωωω i = i−1RRRT
i

i−1ωωω i−1 + izzzi q̇i (2)

iω̇ωω i = i−1RRRT
i

i−1ω̇ωω i−1 + izzzi q̈i + iωωω i × (izzzi q̇i) (3)

i p̈ppi =
i−1RRRT

i

{
i−1 p̈ppi−1 + i−1ω̇ωω i−1× i−1p̂ppi +

i−1ωωω i−1× (i−1ωωω i−1× i−1p̂ppi)
}

(4)

i s̈ssi = i p̈ppi +
iω̇ωω i × i ŝssi + iωωω i × (iωωω i × i ŝssi) (5)

ここで，i−1RRRi は Σi−1から Σi への回転行列，
izzzi = [0,0,1]Tはリンク i の回転軸を表す単位ベクトル，i−1p̂ppi は Σi−1

の原点から Σi までの位置ベクトル，
i ŝssi は Σi の原点からリンク iの質量中心までの位置ベクトルを表している．ま

た，初期値は 0ωωω0 = 000，0ω̇ωω0 = 000，0 p̈pp0 = ggg = [0,0,g]T，0s̈ss0 = 000に設定する．ここで gは重力加速度を表す．

ここで拘束運動について次の 2つの仮定を行う．(i)抗力 fn，外界接触部の摩擦力 ft は直交する．(ii) ft は抗力に

比例して決定される： ft = K fn (K は摩擦係数 : 0 < K ≤ 1)．抗力 fnは次章で述べる方法により決定される．次に

逆動力学計算に基づいて，先端のリンクから根元のリンクに向かってリンク iにおけるNewtonの方程式及び Euler

まず，Newton-Euler法の順動力学計算として根元のリンクから先端のリンクに向かってリンク i の角速度 iωωω i，

角加速度 iω̇ωω i，原点における並進加速度
i p̈ppi，質量中心における並進加速度

i s̈ssi を以下の式から計算する．左上添字

は基準としている座標系を，右下の添字は対象としているリンクを表している．
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の方程式を式（6）∼（8）に基づいて導出する．

n+1 fff n+1 = −0RRRT
n+1





(
∂C
∂ rrr

)

∥∥∥ ∂C
∂ rrr

∥∥∥
fn−

ṙrr
‖ṙrr‖

ft



 (6)

i fff i = iRRRi+1
i+1 fff i+1 +mi

i s̈ssi (7)

innni = iRRRi+1
i+1nnni+1 + i III i

iω̇ωω i + iωωω i × (i III i
iωωω i)+ i ŝssi × (mi

i s̈ssi)+ i p̂ppi+1× (iRRRi+1
i+1 fff i+1) (8)

i fff i ,
innni はそれぞれリンク (i−1)からリンク i に加えられる力とモーメントを Σi で表わしたものである．また，

i III i

は第 iリンクの重心における慣性行列を表す．手先が地面に与える力 n+1 fff n+1は抗力・摩擦力の反作用の力となる

ため，式（6）のように計算すればよい．式（7），（8）の Newtonと Eulerの方程式を手先より根元のリンクまで

繰り返すことで全リンクの運動方程式が求まる．ここで全ての関節が izi 軸回りの回転を行うように Σi を定めた場

合，関節駆動力 τi と
0nnni の関係は以下のように計算される．

τi = izzzT
i

innni +Di q̇i (9)

ここで，Di は関節 i の粘性摩擦係数を表す．

3. 抗力 fn の導出

本章では抗力 fnの導出方法について述べる．マニピュレータの手先拘束状態の拘束条件は式（1）で表され，運

動方程式は以下の式（10）で表される．

MMM(qqq)q̈qq+hhh(qqq, q̇qq)+ggg(qqq)+DDDq̇qq− ( jjjc− jjj tK) fn = τττ (10)
ここで，MMM(qqq)は n×nの慣性行列, hhh(qqq, q̇qq)，ggg(qqq)はそれぞれ遠心力/コリオリ力の項及び重力項を表す n×1のベク
トル，DDDは関節の粘性摩擦係数を表す n×nの対角行列 DDD = diag[D1,D2, · · · ,Dn]，τττ は n×1の入力トルクベクト
ルである．また， jjjcと jjj t は以下のように定義される．

jjjc ,
(

∂ rrr

∂qqqT

)T (
∂C
∂ rrr

)
/

∥∥∥∥
∂C
∂ rrr

∥∥∥∥, jjjt ,
(

∂ rrr

∂qqqT

)T ṙrr
‖ṙrr‖

(11)

式（1）を時間 t で２階微分し，q̈qqの拘束条件を求めると，

q̇qqT

[
∂

∂qqq

(
∂C
∂qqqT

)]
q̇qq+

(
∂C
∂qqqT

)
q̈qq = 0 (12)

が得られる．マニピュレータが常に拘束面に拘束されるためには，式（10）の解 q(t)が時間 t に無関係に式（1）

を満たさなければならない．式（1）の時間微分によって得られた式（12）を満たす q̈と式（10）の q̈が同じ値を

とるとき，式（10）の q(t)は式（1）を満たすことになる．式（10），（12）から q̈qqを消去すると
(

∂C
∂qqqT

)
MMM−1

(
∂C
∂qqqT

)T fn∥∥∥∥
∂C
∂ rrrT

∥∥∥∥
=

(
∂C
∂qqqT

)
MMM−1 ( jjj tK fn +DDDq̇qq+hhh+ggg− τττ)− q̇qqT

[
∂

∂qqq

(
∂C
∂qqqT

)]
q̇qq (13)

が得られる．ここで，

mc , (∂C/∂qqqT)MMM−1(∂C/∂qqqT)T (14)

と置く．MMM−1は正則であり，∂C/∂qqqT = (∂C/∂ rrrT)(∂ rrr/∂qqqT)でありC = 0は ∂C/∂ rrrT 6= 000を満たす曲面とする．こ

こで ∂ rrr/∂qqqTは行フルランクを仮定し，特異姿勢を除いて考えることにすると，∂C/∂qqqT 6= 000であるからmc 6= 0で

ある．mcを用いると式（13）は，

mc fn =
∥∥∥∥

∂C
∂ rrrT

∥∥∥∥
{(

∂C
∂qqqT

)
MMM−1( jjj tK fn +DDDq̇qq+hhh+ggg− τττ)− q̇qqT

[
∂

∂qqq

(
∂C
∂qqqT

)]
q̇qq

}
(15)

となり，また

dddT ,
∥∥∥∥

∂C
∂ rrrT

∥∥∥∥
(

∂C
∂qqqT

)
MMM−1 (16)

と置くと式（15）は以下のようになる．

mc fn = dddT jjj tK fn−dddTτττ +dddT {DDDq̇qq+hhh+ggg}−
∥∥∥∥

∂C
∂ rrrT

∥∥∥∥q̇qqT
[

∂
∂qqq

(
∂C
∂qqqT

)]
q̇qq (17)

ここで

a , dddT {DDDq̇qq+hhh+ggg}−
∥∥∥∥

∂C
∂ rrrT

∥∥∥∥q̇qqT
[

∂
∂qqq

(
∂C
∂qqqT

)]
q̇qq (18)
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とすると

mc fn = dddT jjj tK fn−dddTτττ +a (19)

となる．さらに

A , mc−dddT jjj tK (20)

と置くことにより，

A fn = a−dddTτττ (21)

となり，A 6= 0のとき拘束点の抗力 fnは入力トルク τττ との代数方程式から求めることが出来る．

3·1 ヤコビ行列の微分の導出

式（18）の右辺の第二項目を式変形すると式（22）のようになる．ただし，手先位置 rrr の qqqに関するヤコビ行

列を (∂ rrr/∂qqqT) = JJJpとおく．

q̇qqT
[

∂
∂qqq

(
∂C
∂qqqT

)]
q̇qq =

dqqqT

dt

[
∂

∂qqq

(
∂C
∂ rrrT

∂ rrr
∂qqqT

)]
q̇qq =

d
dt

(
∂C
∂ rrrT JJJp

)
q̇qq =

[
d
dt

(
∂C
∂ rrrT

)
JJJp +

∂C
∂ rrrT

dJJJp

dt

]
q̇qq (22)

よって式（18）の aを求めるにはヤコビ行列の時間微分を求める必要がある．ここでは，その導出方法について

述べる．

まず，回転関節のみで構成されたロボットを仮定すると第 i リンクのヤコビ行列 JJJi は次のように導出されるこ

とが知られている．

JJJi =

[
0zzz1× 0pppi,1

0zzz2× 0pppi,2 · · · 0zzzn× 0pppi,n
0zzz1

0zzz2 · · · 0zzzn

]
=

[
JJJpi

JJJri

]
(i = 1,2, · · · ,n+1) (23)

ここで，JJJpi，Jri はそれぞれリンク iの位置，姿勢のヤコビ行列を表す．0pppi は根元からリンク iまでの位置ベクト

ルであり，0pppn+1はマニピュレータの根元から手先までの位置ベクトルを表す．また，
0zzzi，

0pppn+1,i は以下のように

定義される．

0zzzi = 0RRRi
izzzi (24)

0pppn+1,i = 0pppn+1− 0pppi (25)

ここで izzzi は，2章ですでに定義されている．式（24）,（25）の両辺を時間 t で微分すると以下の式が得られる．
0żzzi = 0ṘRRi

izzzi + 0RRRi
i żzzi = 0ṘRRi

izzzi = 0ωωω i × 0RRRi
izzzi (26)

0ṗppn+1,i = 0 ṗppn+1− 0ṗppi = JJJp(n+1)q̇qq−JJJpiq̇qq (27)

次に式（23）中の 0zzzi × 0pppn+1,i を時間 t で微分すると式（26），（27）より以下のようになる．

d
(

0zzzi × 0pppn+1,i

)

dt
= 0żzzi × 0pppn+1,i +

0zzzi × 0ṗppn+1,i =
(0ωωω i × 0RRRi

izzzi
)
× 0pppn+1,i +

0zzzi ×
(
JJJp(n+1)q̇qq−JJJpiq̇qq

)
(28)

したがって，ヤコビ行列 JJJi の時間微分は以下の式から計算することができる．

J̇JJi =

[(
0ωωω1× 0RRR1

izzzi
)
× 0pppn+1,1 + 0zzz1×

(
JJJp(n+1)q̇qq−JJJp1q̇qq

)
· · ·

(
0ωωωn× 0RRRn

nzzzn
)
× 0pppn+1,n + 0zzzn×

(
JJJp(n+1)q̇qq−JJJpnq̇qq

)

0ωωω1× 0RRR1
1zzz1 · · · 0ωωωn× 0RRRn

nzzzn

]

(29)

4. 順動力学問題の解法

nリンク多関節マニピュレータの運動方程式である式（10）に含まれるMMM(qqq), hhh(qqq, q̇qq), ggg(qqq)を直接計算すること

は nが大きくなると容易ではない．以下に NE逆動力学解法を用いた順動力学問題の解法を述べる．

まず bbb = hhh(qqq, q̇qq)+ggg(qqq)+DDDq̇qqとして，式（10）の左辺を τττ pと置く．

MMM(qqq)q̈qq+bbb− ( jjjc− jjj tK) fn = τττ p (30)

式（2）∼（9）に示す逆動力学計算を τττ p = INV(qqq, q̇qq, q̈qq,ggg, fn,K)と表現する時，次式が得られる．

MMM(qqq)q̈qq+bbb− ( jjjc− jjj tK) fn = INV(qqq, q̇qq, q̈qq,ggg, fn,K) (31)

ここで，式（31）に q̈qq= 000, fn = 0を代入すると bbb= INV(qqq, q̇qq,000,ggg,0,K)が得られ，次に q̇qq= 000, q̈qq= eeei , ggg= 000, fn = 0
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を式（31）に代入すると MMMi = MMM(qqq)eeei = INV(qqq,000,eeei ,000,0,K)となる．MMMi は慣性行列の第 i 列を表すベクトル，eeei

は第 i 番目の要素に ‘1’ を持つ単位ベクトル eeei = [0, · · · ,1(i),0, · · · ,0]T であり，MMM(qqq)の要素が列毎に計算される.

そして， jjjcは式（32）, jjj t は τ̃ττ を以下のように定義することで式（34）のように求めることができる．

jjjc = INV(qqq,000,000,000,−1,0) (32)

τ̃ττ , jjjc− jjj t = INV(qqq,000,000,000,−1,1) (33)

jjj t = jjjc− τ̃ττ (34)

これより，式（16）より dddT が，式（18）より aが，式（20）より Aが求まるため，式（21）より fnを計算する

ことができる．

ここで，bbbn = bbb− ( jjjc − jjj tK) fn と置くと，q̈qq = 000を代入し，上記で求まった fn を用いることで，bbbn は bbbn =

INV(qqq, q̇qq,000,ggg, fn,K)と得られる．したがって，拘束運動時の各リンクの角加速度 q̈qqは以下のように計算される．

q̈qq = MMM−1(τττ −bbbn) (35)

与式の q̈qqを数値積分することで，式（30）の運動方程式を陽に求めることなくハンドが対象物に接触し拘束され

ているマニピュレータの順動力学計算を行うことができる．

q1

q2

link-1

link-2

link-3

q3
q1

q2

link-1 link-2
z

(a) 2-link manipulator (b) 3-link manipulator

yx
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Ü0 Ü0

Fig. 2 (a) is model of 2-link manipulator (initial angle:qqq = [−π/6,−2π/3]) and (b) is model of 3-link
manipulator (initial angle:qqq = [−π/6,−π/3,−π/3]T).
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Fig. 3 Time responses of hand position0z2 (right scale) and joint anglesq1, q2 (left scale) of 2-link manipulator
are plotted. Input torque was set toτττ = [−3,3]T. This chart shows that hand position is constrainted in
0z2 = 0 at all times by the proposed method.

5. 数値シミュレーション

本章では第 2章∼第 4章で述べた提案方法で拘束条件式（1）を満たしながら運動する拘束運動を，2リンク及

び 3リンクマニピュレータを用いたシミュレーションによって確認する．シミュレーション環境はプログラム作

成のため “Borland C++ Builder Professional Ver. 5.0”を用い，表示には “OpenGL Ver. 1.5.0”を用いた．尚，ルンゲ

クッタを用いた数値積分時間は 1.0×10−2 [sec]，地面の摩擦係数は K = 0.2と設定し， ft = 0.2 fnである．
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Fig. 4 Hand position and joint angles (2-link,τττ = [3sinπt/3,3sinπt/3]T)
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Fig. 5 Hand position and joint angles (3-link,τττ = [3,3,3]T)
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Fig. 6 Hand position and joint angles (3-link,τττ = [−3cos2πt,−3sin2πt,3cos2πt]T)
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Fig. 7 Initial angle is set toqqq = [−π/12,π/6]T as (a), and a input torque compensating gravity and normal force
in such a way as to converge atqqq = [−π/3,2π/3]T as (b) is set tōτττ = [0,−lmg/4]T.

5·1 拘束条件維持の確認

図 2に示す 2リンク及び 3リンクマニピュレータを用いて拘束運動のシミュレーションを行う．物理パラメー

タは各リンクの質量を mi = 1.0[kg]，長さを l i = 0.5[m]，各関節の粘性摩擦係数を Di = 3.0[N·m·s/rad] と設定し，
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Fig. 8 Screen shot of free response of 2-link manipulator
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Fig. 9 Time response ofy component of forces acting on each link0 f1y, 0 f2y and frictional forceft of 2-link
manipulator are plotted.
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Fig. 10 Time response ofz component of forces acting on each link0 f1z, 0 f2z and normal forcefn of 2-link
manipulator are plotted.

Table 1 Physical parameters of 2-link manipulator

Link numberi 1 (i=1) 2 (i=2)

mi [kg] 1.0 1.0

l i [m] 0.5 0.5

Di [N ·m ·s/rad] 3.0 3.0

τi [N ·m] 0 −4.9/4

g [m/s2] 9.8

K 0.01

Table 2 Initial and converged value ofq1,q2,
0 f1,0 f2,0 fn

Link numberi 1 (i=1) 2 (i=2)

Initial angleqi [rad] −7π/12 π/6

Converged value ofqi [rad] −5π/6 2π/3

Converged value of0 fff i [N] [0,−0.098,9.8]T [0,−0.098,0]T

Converged value of0 fn [N] 9.8

図 2の姿勢（2リンク：qqq = [−π/6,−2π/3]，3リンク：qqq = [−π/6,−π/3,−π/3]T）を初期姿勢とし，入力トルク

τττ [N]を変化させてシミュレーションを行った．図 2に示すように，2リンクおよび 3リンクマニピュレータとも

に y-z平面内の運動である．

2リンクマニピュレータに任意の入力の一例として 2種類の入力 τττ = [−3,3]T，τττ = [3sinπt/3,3sinπt/3]T を与

えたときのリンク 2の先端の z座標 0z2と各リンクの角度 q1，q2の値の時間変化をそれぞれ図 3，4に示す．同様

に 3リンクマニピュレータに 2種類の入力 τττ = [3,3,3]T，τττ = [−3cos2πt,−3sin2πt,3cos2πt]T を与えたときのリ

ンク 3の先端の z座標 0z3と各リンクの角度 q1，q2，q3の値の時間変化をそれぞれ図 5，6に示す．これらのグラ

フから任意の入力を与えても手先の座標 0z2，
0z3は常に 0に拘束されており，これにより今回提案する繰り返し

計算で拘束状態を表現できることを確認した．
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5·2 拘束運動中の各関節に作用する力の時間変化

前節では提案手法が拘束運動の生成に関して，常に拘束条件を満たしつつ変化する運動を表現している点につ

いて確認した．リンク i−1からリンク i に作用する力 i fff i とモーメント
innni の計算は式（31）に示すように NE法

の逆動力学計算過程に含まれており，ここでは NE法が運動を生成する力・トルクとそれ以外の運動生成には無関

係な力・トルクの両方を計算することができる特徴を持っている点について注目する．また，座標系 Σ0からみた

作用力は 0 fff i = 0RRRi
i fff i によって計算が可能であり，本節では拘束運動中の作用力

0 fff i が正しく計算されていること

を確認し，作用力・抗力の時間応答を調べる．

まず，2リンクマニピュレータにおいて各リンク間に働く作用力，抗力を調べた．ここでは初期形状と目標形状

の平衡点が特異姿勢になることを避けるために図 7 (a)を初期形状として与え，また図 7 (b)の姿勢が安定平衡点

となるような重力，拘束力を補償する入力として式（36）で与えられる τ̄ττ を τττ として与えた．

τ̄ττ = [0,−mgl/4]T (36)

ここで l1 = l2 = l とし，摩擦係数を K = 0.01，初期姿勢を図 7 (a)に示すように qqq = [−7π/12,π/6] とする．シ

ミュレーションはマニピュレータが静止状態（各関節の角速度が |q̇i | < 0.001[rad/s]を満たすときを静止と判定す

る）となるまで行う．シミュレーションのスクリーンショットを図 8に，各関節に働く力 0 fff 1 = [0 f1x,
0 f1y,

0 f1z]T，
0 fff 2 = [0 f2x,

0 f2y,
0 f2z]Tの y成分と手先に働く摩擦力 ft の時間応答を図 9に，0 fff 1，

0 fff 2の z成分と抗力 fnの時間応

答を図 10に，また，物理パラメータを表 1に，初期値，最終値を表 2に示す．

図 9，10には，t = 0.10の運動初期の時刻を 1©とし，t = 4.85の時刻を 2©として示している． 1©， 2©について，
y，z方向に働く力と加速度の方向を表したものを図 11に示す．リンク i に作用する力として fiy， fizはそれぞれ

リンク i −1からリンク i に作用する力の y，z成分，− f(i+1)y，− f(i+1)zはそれぞれリンク i +1からリンク i に作

用する力の y，z成分であり， fnは抗力， ft は摩擦力，mgは重力を表す．図 11(a)は y軸方向のハンドの運動は y

軸マイナス方向に加速する運動であることを表しており，図 11(c)は加速度が y軸プラス方向の減速運動であるこ

とを表している．図 11(b)は落下方向（z軸マイナス方向）に加速度を発生しているが，図 11(d)では加速度の方

向は z軸プラス方向であり，減速運動であることがわかる．

さらにリンク 1，2に作用する力については図 9に y方向に働く力を示しており，図 10に z方向に働く力

を示している． 1© (t = 0.10) のときの各力は 0 fff 1 = [0,−0.129,10.252]T，0 fff 2 = [0,−0.120,0.464]T， ft = 0.093，

fn = 9.324となっている．また，リンク i の Σ0から見た質量中心の並進加速度は
0s̈ssi = 0RRRi

i s̈ssi より導出でき，A©
0s̈ss1 = [0,−0.009,−0.012]T，0s̈ss2 = [0,−0.027,−0.012]Tという結果が得られた．さらに t = 0.10のときのリンク iに

働く全外力を 0 f̂ff i = [0 f̂ix,0 f̂iy,0 f̂iz]T と表し，それぞれについて調べると，
0 f̂1y = 0 f1y− 0 f2y = −0.009 (37)

0 f̂1z = 0 f1z− 0 f2z−mg= −0.012 (38)

0 f̂2y = 0 f2y + ft = −0.027 (39)

0 f̂2z = 0 f2z+ fn−mg= −0.012 (40)

となる．したがって，リンク 1，2の質量中心の並進加速度はそれぞれ 0 f̂ff 1/m1 = [0,−0.009,−0.012]T，0 f̂ff 2/m2 =

[0,−0.027,−0.012]T となり，上記のA©0s̈ss1，
0s̈ss2の値と一致している．

次に 2© (t = 4.85)のときの各リンクに働く力と加速度は，0 fff 1 = [0,−0.088,10.074]T，0 fff 2 = [0,−0.090,0.271]T，

ft = 0.095， fn = 9.533，0s̈ss1 = [0,0.002,0.003]T，0s̈ss2 = [0,0.006,0.003]Tという結果が得られた．よって式（37）∼
（40）と同様にして t = 4.85のときの各リンクに働く全外力は 0 f̂ff 1 = [0,0.002,0.003]T，0 f̂ff 2 = [0,0.006,0.003]Tとなる．

したがって，リンク 1，2の質量中心の並進加速度はそれぞれ 0 f̂ff 1/m1 = [0,0.002,0.003]T，0 f̂ff 2/m2 = [0,0.006,0.003]T

となり， 1©の時刻と同様に 2©の時刻における加速度と作用力の関係は矛盾がない．
次に，3リンクマニピュレータにおいて各リンク間に働く作用力，抗力を調べた．qqq= [0,−π/2,−π/2]Tの平衡点

から角度を 0.05ずつずらした図 12 (a)の姿勢（qqq = [−0.05,−π/2+0.05,−π/2+0.05]T）を初期姿勢とし，最終的

に図 12 (b)の平衡点に収束する自由応答シミュレーションを行った．このシミュレーションのスクリーンショット

を図 13に，各関節に働く力 0 fff 1 = [0 f1x,
0 f1y,

0 f1z]T，0 fff 2 = [0 f2x,
0 f2y,

0 f2z]T，0 fff 3 = [0 f3x,
0 f3y,

0 f3z]T，の y成分と手

先に働く摩擦力 ft の時間応答を図 14に，z成分と抗力 fnの時間応答を図 15に，また，物理パラメータを表 3に，

初期値，最終値を表 4に示す．図 14，15には，t = 3.01の時刻を 3©とし，t = 3.95の時刻を 4©として示している．



9

Nishiguchi, Minami and Yanou, Transactions of the JSME (in Japanese), Vol.80, No.815 (2014)

© 2014 The Japan Society of Mechanical Engineers[DOI: 10.1299/transjsme.2014dr0208]

ft

1ç t = 0:10[sec]

2ç t = 4:85[sec]

link-1 link-2

:  Direction of each link’s acceleration

: fiz : Äf(i+1)z

fn

mgmg

link-1 link-2

: fiy : Äf(i+1)y

ft

: fiy : Äf(i+1)y

link-1 link-2
link-1 link-2

: fiz : Äf(i+1)z

z

yx

Ü0

mgmg

fn

z

y

x

Ü0

z

yx

Ü0

z

y
x

Ü0

(a) (b)

(c) (d)

acceleration of link 1 and 2 

at the gravity centers

acceleration of link 1 and 2 

at the gravity centers

acceleration of link 1 and 2 

at the gravity centers

acceleration of link 1 and 2 

at the gravity centers

Fig. 11 Forces acting on each link and accelerations of each link at1© t = 0.10 [sec] are shown at (a) as fory-
direction and (b) as forz-direction. Also, at2© t = 4.85 [sec] they are shown at (c) as fory-direction and
(d) as forz-direction.

3©， 4©について，y，z方向に働く力と加速度の方向を表したものを図 16に示す． 3© (t = 3.01)のときの各力と，各

加速度は 0 fff 1 = [0,0.368,16.952]T，0 fff 2 = [0,0.308,7.322]T，0 fff 3 = [0,0.197,−2.134]T， ft = −0.118， fn = 11.760，
0s̈ss1 = [0,0.060,−0.170]T，0s̈ss2 = [0,0.111,−0.343]T，0s̈ss3 = [0,0.079,−0.174]T となり，式（37）∼（40）と同様に

して計算すると t = 3.01のときの各リンクに働く全外力は 0 f̂ff 1 = [0,0.060,−0.170]T，0 f̂ff 2 = [0,0.111,−0.343]T，
0 f̂ff 3 = [0,0.079,−0.174]Tとなる．したがって 0 f̂ff i/mi から得られる加速度の値と一致するため，加速度と作用力の

関係は矛盾がない．

次に 4© (t = 3.95) のときの各力と，各加速度は 0 fff 1 = [0,−1.772,16.826]T，0 fff 2 = [0,−1.499,7.033]T，0 fff 3 =

[0,−0.968,−2.803]T， ft = −0.127， fn = 12.658，0s̈ss1 = [0,−0.274,−0.007]T，0s̈ss2 = [0,−0.007,−0.036]T，0s̈ss3 =

[0,−0.841,−0.055]T となり，t = 3.95 のときの各リンクに働く全外力は 0 f̂ff 1 = [0,−0.274,−0.007]T，0 f̂ff 2 =

[0,−0.007,−0.036]T，0 f̂ff 3 = [0,−0.841,−0.055]T となる．したがって 0 fff iz/mi から得られる加速度の値と一致す

るため，加速度と作用力の関係は矛盾がない．また図 14より時刻 4©付近で y方向の作用力が負の方向で最大に

なっている．このときのマニピュレータの形状は，図 13および図 16 (c)，(d)に示すように特異形状に近い形と

なっていることがわかる．これは各リンクに働く力は，特異形状付近で大きくなることを示している．

Table 3 Physical parameters of 3-link manipulator

Link numberi 1 (i=1) 2 (i=2) 3 (i=3)

mi [kg] 1.0 1.0 1.0

l i [m] 0.5 0.5 0.5

Di [N ·m ·s/rad] 3.0 3.0 3.0

τi [N ·m] 0 0 0

g [m/s2] 9.8

K 0.01
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Fig. 13 Screen shot of free response of 3-link manipulator
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Fig. 14 Time response ofy component of forces acting on each link0 f1y, 0 f2y, 0 f3y and frictional forceft of 3-link
manipulator are plotted.

Table 4 Initial and converged values ofq1,q2,q3
0 f1,0 f2,0 f3,0 fn

Link numberi 1 (i=1) 2 (i=2) 3 (i=3)

Initial angleqi [rad] −0.05 −π/2+0.05 −π/2+0.05

Converged value ofqi [rad] −π π/2 π/2

Converged value of0 fff i [N] [0,−0.147,14.7]T [0,−0.147,4.9]T [0,−0.147,−4.9]T

Converged value of0 fn [N] 14.7

6. 結 言

本論文では，Newton-Euler法の逆動力学計算を利用した拘束運動を表現するための繰り返し計算について提案

し，順動力学計算の解法について示した．またシミュレーション結果から，この計算法によりマニピュレータの
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Fig. 15 Time response ofz component of forces acting on each link0 f1z, 0 f2z, 0 f3z and normal forcefn of 3-link
manipulator are plotted.
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Fig. 16 Forces acting on each link and accelerations of each link at3© t = 3.01 [sec] are shown at (a) as fory-

direction and (b) as forz-direction. Also, at4© t = 3.95 [sec] they are shown at (c) as fory-direction and
(d) as forz-direction.

手先拘束運動を表現でき，各リンク間に働く力の計算が可能であることを示した．

今後の方針としては，今回提案した計算法について拘束条件が 2つ以上ある多点拘束の場合に拡張し，数値シ

ミュレーションにより評価していくことが挙げられる．
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