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概要 安全性の観点から，制御系は制御系全体だけでなく補償器自身も安定な強安定系が望ましいと考えられる．
また，著者らはこれまで既約分解表現を用いた制御系に対して強安定率の概念を提案してきた．そこで本報告で
は，この概念を用いてセルフチューニングコントローラを構成し，制御器の安定性と強安定率の関係について簡
単な数値例を用いて考察する．
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1 はじめに
制御系は安全性の観点から，制御系全体だけでなく

補償器自身も安定な強安定系が望ましいと考えられる．
これまで著者らは既約分解表現を用いて強安定系の構
成法を提案してきた 1, 2)が，フィードバックループが
切断された強安定系における開ループ応答は，定常値に
落ち着くものの目標値から大きくずれる場合があり，こ
の状態は安定であるが安全とは言えない．また，フィー
ドバックループが切断されても，ある条件のもとで制
御量の定常値を目標値に一致させる手法を提案してい
る 3)が，その条件が成り立たない場合にはこの手法の
適用はできなかった．
そこで本論文では，開ループ系と閉ループ系の定常

値の比を強安定率として定義し 4, 5)，この概念を用い
てセルフチューニングコントローラを構成した場合の
制御器の安定性を簡単な数値例によって考察する．
注意 z−1で時間遅れ z−1y(t) = y(t−1)を表す．z−1

の多項式を A[z−1]，有理関数を A(z−1)のように括弧
[·]と (·)を用いて区別する．定常状態を計算する場合
は時間による信号の変化が無いと考え z−1 = 1として
計算を行う．

2 制御系の既約分解表現
まず，伝達関数を既約分解表現するために以下の安

定有理関数の族 RH∞ を考える．

RH∞ = {G(z−1) =
Gn[z

−1]

Gd[z−1]
, Gd[z

−1]:安定多項式 }

つぎに，制御対象の伝達関数 G(z−1)を以下のように
既約分解する．

y(t) = G(z−1)u(t)

= N(z−1)D−1(z−1)u(t) (1)

ここで y(t) は出力，u(t) は入力であり，N(z−1)
，D(z−1) は RH∞ に属するものとする．なお，本報
告では安定な制御対象のみを扱うものとしている．
X(z−1)，Y (z−1)を以下の Bezout等式の解とおく．

X(z−1)N(z−1) + Y (z−1)D(z−1) = 1 (2)

ここで

X(z−1), Y (z−1) ∈ RH∞

式 (1)，(2)より設計パラメータを U(z−1), K(z−1) ∈
RH∞ として，すべての安定化補償器は以下の形で与

Fig. 1: Closed-loop system in RH∞

Fig. 2: Equivalent transformation of Fig.1

えられる 6)．

u(t) = C1(z
−1)w(t)− C2(z

−1)y(t) (3)

C1(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1

·K(z−1) (4)

C2(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1

·(X(z−1) + U(z−1)D(z−1)) (5)

ここで w(t)は目標値信号を表す．また，この安定化補
償器によって与えられる系を Fig.1に示す．
式 (3)，(4)，(5)を式 (1)に代入すると，閉ループ伝

達関数は以下のように与えられる．

y(t) = N(z−1)D−1(z−1)(Y (z−1)− U(z−1)

·N(z−1))−1K(z−1)w(t)−N(z−1)

·D−1(z−1)(Y (z−1)− U(z−1)N(z−1))−1

·(X(z−1) + U(z−1)D(z−1))y(t) (6)

これを整理すると

{D(z−1)(Y (z−1)− U(z−1)N(z−1)) +

N(z−1)(X(z−1) + U(z−1)D(z−1))}y(t) =
N(z−1)K(z−1)w(t) (7)

すなわち

(X(z−1)N(z−1) + Y (z−1)D(z−1))y(t) =

N(z−1)K(z−1)w(t) (8)

よって

y(t) = (X(z−1)N(z−1) + Y (z−1)D(z−1))−1

·N(z−1)K(z−1)w(t) (9)
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Fig. 3: Open-loop system in RH∞

Fig. 4: Equivalent transformation of Fig.3

式 (2)より，閉ループ系は Fig.2で示すように以下で表
すことができる．

y(t) = N(z−1)K(z−1)w(t) (10)

このとき，定値制御を考えた補償器が設計されていれ
ば，十分に時間が経過した後，出力 y(t)が目標値 w(t)
に追従する．すなわち，閉ループ系 (10)の定常ゲイン
は N(1)K(1) = 1 となるよう構成されている．また，
安定化補償器 (3)に含まれる設計パラメータU(z−1)は
閉ループ系 (10)に影響を与えない．

3 強安定率
前節で述べたように，式 (3)の設計パラメータU(z−1)

を利用すれば，閉ループ系の特性を変えることなく補
償器の極を変えることができる．これまで著者らは，
U(z−1)を選定し補償器を安定化することで強安定系が
構成できることを示している．さらに強安定系の開ルー
プゲインが閉ループ系の定常ゲイン N(1)K(1)と等し
くなる U(z−1)の条件式を提案した 3) が，計算された
U(z−1)を利用しても安定な補償器とならず，強安定系
を構成できない場合があった．言い換えれば，U(z−1)
に課された条件が厳しかったと考えられる．
本章ではこの条件を緩和し，開ループゲインが閉ルー

プゲインとどれだけ近いかということを安全性の一つ
の指標として考え，これを強安定率として定める 4, 5)．
まず，Fig.1の開ループ系は Fig.3のように与えられ，

制御入力は次のように表すことができる．

u(t) = (Y (z−1)− U(z−1)N(z−1))−1K(z−1)w(t)

(11)

これを式 (1)に代入すると，目標値 w(t)から出力 y(t)
に至る開ループ系の伝達関数は以下で与えられる．

y(t) = N(z−1)D−1(z−1)u(t)

= N(z−1)D−1(z−1)(Y (z−1)− U(z−1)

·N(z−1))−1K(z−1)w(t)

= (Y (z−1)D(z−1)− U(z−1)N(z−1)

·D(z−1))−1N(z−1)K(z−1)w(t) (12)

ここで Y (z−1)D(z−1) = 1 − X(z−1)N(z−1) なので
Fig.4に示すような系に書き改められる．

y(t) = (1−X(z−1)N(z−1)− U(z−1)N(z−1)

·D(z−1))−1N(z−1)K(z−1)w(t)

= {1− (X(z−1) + U(z−1)D(z−1))N(z−1)}−1

·N(z−1)K(z−1)w(t) (13)

つぎに安定化補償器 (3) の設計パラメータとして
U(z−1) = −αD−1(1)X(1)を選ぶと

y(t) = {1− (X(z−1)− αD−1(1)X(1)D(z−1))

·N(z−1)}−1N(z−1)K(z−1)w(t) (14)

を得る．するとこの系の定常状態は以下で与えられる．

y(t) = {1− (X(1)− αD−1(1)X(1)D(1))N(1)}−1

·N(1)K(1)w(t)

= (1−X(1)N(1) + αX(1)N(1))−1N(1)

·K(1)w(t)

= (αX(1)N(1) + Y (1)D(1))−1N(1)K(1)w(t)

(15)

以上より，閉ループゲインと開ループゲインの比を s(α)
とおくと以下の式を得る．

s(α) = (αX(1)N(1) + Y (1)D(1))−1N(1)K(1)

· 1

N(1)K(1)

=
1

αX(1)N(1) + Y (1)D(1)
(16)

s(α)は開ループゲインそのものであり，本研究ではこ
れを強安定率としている．
もしα = 1と選んで強安定系を構成できれば，フィー

ドバックループが切断されても開ループゲインが閉ルー
プゲインと一致し，定常状態において出力は目標値に
一致する．この場合，強安定率は s(α) = 1となり，本
研究においては系が最も安全であることを意味する．
一方，α = 1では強安定系が構成できなかった場合，

補償器を安定にする αを選定する必要がある．その場
合，s(α)は 1とはならず，開ループ系と閉ループ系の定
常状態にずれが生じることを意味する．これは，フィー
ドバック信号が切断された場合に出力が目標値からず
れることを意味し，このずれが大きいほど，水位制御
系における液あふれや温度制御系における異常な温度
上昇の可能性があることを意味している．

4 数値例
4.1 既存の制御系の準備 5)

以下では強安定率の概念を用いてセルフチューニン
グコントローラを構成した場合の制御器の安定性を簡
単な数値例によって確認する．そのため，本節で設計
していく制御系はすでに存在しているものとする．
制御対象を以下の１入力１出力系とおく．

A[z−1]y(t) = z−1B[z−1]u(t) (17)

ここで y(t)は出力，u(t)は入力とし，外乱は存在しな
いとする．制御目標は目標値 wに出力が一致すること
である．さらにA[z−1]，B[z−1]はそれぞれ以下の多項
式で表され，A[z−1]は安定多項式であるとする．

A[z−1] = 1 + a1z
−1 (18)

B[z−1] = b0 (19)
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つぎに制御対象の定常状態を考える．出力の定常状態
を y∞，入力の定常状態を u∞とすると以下の関係が成
り立つ．

A[z−1]y∞ = z−1B[z−1]u∞ (20)

ここで偏差を ỹ(t) = y(t) − y∞，ũ(t) = u(t) − u∞ と
定義し，定常状態で出力が一定の目標値 w に一致し，
y∞ = wとなるとすると，ỹ(t) = y(t)− wと表すこと
ができる．式 (17)から式 (20)を減じることで以下の偏
差系を得る．

A[z−1]ỹ(t) = z−1B[z−1]ũ(t) (21)

この偏差系に対し一般化予測制御系 (Generalized Pre-
dictive Control: GPC)7, 8)を構成する．なお，ここで
は簡単化のためGPCの設計パラメータとして予測ホラ
イズンを [N1, N2] = [1, 1]，制御ホライズンをNu = 1，
制御入力の重み係数を λ (= 10)とおく．
制御則の導出に必要な出力予測式 ˆ̃y(t+1|t)を導出す

るため，以下の Diophantine方程式を導入する．

1 = A[z−1]E1[z
−1] + z−1F1[z

−1] (22)

ここで E1[z
−1]，F1[z

−1]はつぎのように与えられる．

E1[z
−1] = 1 (23)

F1[z
−1] = f10 ( = −a1) (24)

さらに E1[z
−1]B[z−1]を以下に示すように分割する．

E1[z
−1]B[z−1] = R1[z

−1] + z−1S1[z
−1] (25)

ただし

R1[z
−1] = r0 ( = b0) (26)

S1[z
−1] = s0 ( = 0) (27)

式 (21)の両辺に z1E1[z
−1]を掛け，式 (22)を代入して

整理すると

ỹ(t+ 1) = R1[z
−1]ũ(t) + h1(t) (28)

ここで h1(t)は以下のようにおく．

h1(t) = F1[z
−1]ỹ(t) + S1[z

−1]ũ(t− 1) (29)

外乱が存在しないと仮定しているので ỹ(t+1) = ˆ̃y(t+
1|t)と表せる．また，予測ホライズンおよび制御ホラ
イズンの長さをそれぞれ 1としているので，ここでは
評価関数を以下のように定義できる．

J = {ỹ(t+ 1)}2 + λ{ũ(t)}2 (30)

式 (30)を ũ(t)で偏微分し，その値を 0とおくことで以
下の式を得る．

ũ(t) = −Fp[z
−1]ỹ(t)− Sp[z

−1]ũ(t− 1) (31)

ただし

Fp[z
−1] = (r20 + λ)−1r0F1[z

−1] (32)

Sp[z
−1] = (r20 + λ)−1r0S1[z

−1] (33)

よって

(1 + z−1Sp[z
−1])ũ(t) = −Fp[z

−1]ỹ(t) (34)

定常状態を考え z−1 = 1とすると A[1]y∞ = B[1]u∞
の関係が成立する．そこでK = A[1]

B[1] とすれば

u∞ =
A[1]

B[1]
y∞ = Kw (35)

となる．また ũ(t) = u(t)− u∞，ỹ(t) = y(t)− wと定
義しているので，式 (31)は次のように表される．

(1 + z−1Sp[z
−1])u(t) =

{Fp[z
−1] + (1 + z−1Sp[z

−1])K}w − Fp[z
−1]y(t)

(36)

すなわち以下の制御則を得る．

u(t) =
Fp[z

−1] + (1 + z−1Sp[z
−1])K

1 + z−1Sp[z−1]
w

− Fp[z
−1]

1 + z−1Sp[z−1]
y(t) (37)

つぎに閉ループ系の式を求めるため，以下の式を定義
する．

DP [z
−1] = A[z−1]Sp[z

−1] +B[z−1]Fp[z
−1] (38)

T [z−1] = A[z−1] + z−1Dp[z
−1] (39)

式 (37)を式 (17)に代入し，式 (38)，(39)を用いるこ
とで，以下の閉ループ系の式を得る．

y(t) =
z−1B[z−1]{Fp[z

−1] + (1 + z−1Sp[z
−1])K}

T [z−1]
w

(40)
ここで，閉ループ特性多項式 T [z−1]が安定となるよう
N1，N2，Nu，λを設計する必要があるが，本報告では
安定な閉ループ特性多項式が得られているとする．具
体的には，制御対象を

y(t) =
0.8z−1

1− 0.9z−1
u(t) (41)

とおくと，制御則および閉ループ系は以下で与えられる．

u(t) = 0.1927w − 0.0677y(t) (42)

y(t) =
0.1541z−1

1− 0.8459z−1
w (43)

このとき，強安定系が構成されるとともにその閉ルー
プゲインは 1に設計される．また目標値を 1としたと
き，Fig.5に示すように目標値追従が達成される．これ
に対し，フィードバック信号が 500ステップ目で切断
され，開ループ系となった場合の制御則と開ループ系
は次のようになる．

u(t) = 0.1927w (44)

y(t) =
0.1542z−1

1− 0.9z−1
w (45)

この系は安定であるが，開ループゲインが 1.542とな
り，出力応答の定常値が目標値から大きくずれてしま
い，安全性の観点から好ましくない．
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Fig. 5: Output response (upper) and Input response
(lower)

4.2 セルフチューニングコントローラの構成
前節の問題に対し，本節では既約分解表現を利用し

て制御則を拡張し，セルフチューニングコントローラ
を構成する．まず前節で得られた安定な閉ループ特性
多項式を利用して，制御対象を次のように既約分解表
現する．

N(z−1) =
0.8z−1

1− 0.8459z−1
(46)

D(z−1) =
1− 0.9z−1

1− 0.8459z−1
(47)

Bezout等式 (2)の解 X(z−1),Y (z−1)はつぎのように
与えられる．

X(z−1) = Fp[z
−1] ( = 0.0677) (48)

Y (z−1) = 1 + z−1Sp[z
−1] ( = 1) (49)

ここで式 (3)の設計パラメータを

K(z−1) = Fp[z
−1] + (1 + z−1Sp[z

−1])K

= 0.1927 (50)

U(z−1) = −αD−1(1)X(1)

= −0.1043α (51)

とおくと，式 (42)を拡張した制御則は次のように与え
られる．

u(t) =
0.1927× (1− 0.8459z−1)

1− (0.8459− 0.0834α)z−1
w

− (0.0677− 0.1043α)− (0.0572− 0.0939α)z−1

1− (0.8459− 0.0834α)z−1
y(t)

(52)

式 (52)で与えられる閉ループ系は式 (10)よりαの値と
は無関係に式 (43)と一致する．また，α = 0と選べば

拡張した制御則は式 (42)と一致する．さらに，開ルー
プ系とその制御則は以下で与えられる．

y(t) =
0.1541z−1 × (1− 0.8459z−1)

(1− 0.9z−1){1− (0.8459− 0.0834α)z−1}
w

(53)

u(t) =
0.1927× (1− 0.8459z−1)

1− (0.8459− 0.0834α)z−1
w (54)

これらの式よりαを適切に調整すれば，開ループゲイン
と強安定系の設計，すなわち強安定率の調整を行える．
つぎに，制御対象の係数が未知であるとし，制御則

(52)に以下のパラメータ同定則を付加してセルフチュー
ニングコントローラを構成する 8)．

θ̂(t) = θ̂(t− 1) +
Γ(t− 1)ψ(t)

1 + ψT (t)Γ(t− 1)ψ(t)
ε(t) (55)

Γ(t) = Γ(t− 1)− Γ(t− 1)ψ(t)ψT (t)Γ(t− 1)

1 + ψT (t)Γ(t− 1)ψ(t)
(56)

ε(t) = y(t)− θ̂T (t− 1)ψ(t) (57)

θ̂(t) = [â1(t), · · · , ân(t), b̂0(t), · · · , b̂m(t)]T (58)

ψ(t) = [−y(t− 1), · · · ,−y(t− n),

u(t− km), · · · , u(t− km −m)]T (59)

ここで â1(t), · · · , b̂m(t) は制御対象の未知係数の同定
値，Γ(t) は誤差共分散行列 (Γ(0) = 10I)， ε(t) は推定
誤差である．
このセルフチューニングコントローラによる制御系

の応答を Fig.6に示す．上図が出力応答，下図が制御入
力を表している．目標値は周期 200，大きさ 1の矩形
波であり，出力には平均 0，分散 0.12 の白色雑音が混
入している．また，500ステップ目を境にフィードバッ
ク信号が切断され，閉ループ応答から開ループ応答に
変化している．図では強安定率を調整するパラメータ
αを 0，0.3，0.7，1と選んだ場合の制御結果を重ねて
示している．図から分かるように，αを 1と選んだ場
合，開ループ応答であっても安定かつ安全に目標値追
従を達成していることが分かる．
さらに α = 1 とした際の制御対象の未知パラメー

タ â1(t)，b̂0(t)の推定結果を Fig.7に示す．なお各パラ
メータのノミナル値は 0.8×真値としている．図より推
定値が真値に収束していくことを確認できる．すなわ
ち，制御対象のパラメータが未知の場合でも，強安定
率を利用して制御系設計を行えることが分かる．

5 おわりに
本報告では強安定率の概念について紹介した．さら

に，セルフチューニングコントローラを構成し，制御
器の安定性を簡単な数値例を用いて考察した．今後も
この概念を利用してモデルフリー強安定系の構成法に
ついて研究を進める．
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