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Abstract– This paper proposes concept of strongly stable rate for control systems using coprime factor-
ization. In this paper, the strongly stable system means that both of closed-loop system and its controller
are stable and the open-loop steady-state value becomes constant even if the feedback loop is cut. Although
the authors have proposed a design method of strongly stable system, the derived system has the possibility
that it is stable and is not safe when the feedback loop was cut. That is, there is a possibility that a large
open-loop steady-state value like overflow of tank system or abnormal rise in temperature occurs in indus-
trial field. For this problem the authors proposed a design method of fitting open-loop gain to closed-loop
gain by using coprime factorization in generalized predictive control. But this method is not always able to
design a strongly stable system. Therefore this paper defines a gap between open-loop gain and closed-loop
gain as strongly stable rate, and a numerical example shows that an introduced parameter in this paper can
modulate the rate.
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1 はじめに
制御系は安全性の観点から，制御系全体だけでなく

補償器自身も安定な強安定系が望ましいと考えられる．
これまで著者らは既約分解表現を用いて強安定系の構
成法を提案してきた 1, 2)が，フィードバックループが
切断された強安定系における開ループ応答は，定常値に
落ち着くものの目標値から大きくずれる場合があり，こ
の状態は安定であるが安全とは言えない．また，フィー
ドバックループが切断されても，ある条件のもとで制
御量の定常値を目標値に一致させる手法を提案してい
る 3)が，その条件が成り立たない場合にはこの手法の
適用はできなかった．
そこで本論文では，フィードバックループが切断さ

れた場合における開ループ系の定常値と閉ループ系の
定常値の比を強安定率として定義し 4)，新しく導入す
るパラメータによって提案する強安定率が調整できる
ことを簡単な数値例を通して示す．
本報告の構成は以下の通りである．まず 2章で問題

設定として既約分解表現を用いた制御系の表現方法と
強安定系について述べる．3章では設計された強安定系
に対して，閉ループ系の定常ゲインとフィードバック
ループが切断された際の開ループ系の定常ゲインの比
を用いて強安定率を定義し，安全性を表す指標のひと
つとして提案する．4章では新しく導入するパラメー
タによって提案する強安定率が調整できることを数値
例を通して示し，5章でまとめを行う．
注意 z−1で時間遅れ z−1y(t) = y(t− 1)を表す．ま

た，z−1 の多項式を A[z−1]，有理関数を A(z−1)のよ
うに括弧 [·]と (·)を用いて区別する．さらに定常状態
を計算する場合は，時間による信号の変化が無いと考
え z−1 = 1として計算を行う．

2 既約分解表現を用いた制御系の表現
まず，伝達関数を既約分解表現するために以下の安

定有理関数の族 RH∞ を考える．

RH∞ = {G(z−1) =
Gn[z

−1]

Gd[z−1]
, Gd[z

−1]:安定多項式 }

Fig. 1: Closed-loop system in RH∞

Fig. 2: Equivalent transformation of Fig.1

つぎに，制御対象の伝達関数 G(z−1)を以下のように
既約分解する．

y(t) = G(z−1)u(t)

= N(z−1)D−1(z−1)u(t) (1)

ここで y(t) は出力，u(t) は入力であり，N(z−1)
，D(z−1) は RH∞ に属するものとする．また，本報
告では安定な制御対象のみを扱うものとしている．
X(z−1)，Y (z−1)を以下の Bezout等式の解とおく．

X(z−1)N(z−1) + Y (z−1)D(z−1) = 1 (2)

ただし

X(z−1), Y (z−1) ∈ RH∞

このとき式 (1)，(2)よりすべての安定化補償器は設計
パラメータを U(z−1), K(z−1) ∈ RH∞ として以下の
形で与えられる 5)．

u(t) = C1(z
−1)w(t)− C2(z

−1)y(t) (3)

C1(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1

·K(z−1) (4)

C2(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1

·(X(z−1) + U(z−1)D(z−1)) (5)



ここで w(t)は目標値信号を表す．また，この安定化補
償器によって与えられる系を Fig.1に示す．
つぎに式 (3)，(4)，(5)を式 (1)に代入すると，閉ルー

プ伝達関数は以下のように与えられる．

y(t) = N(z−1)D−1(z−1)(Y (z−1)− U(z−1)

·N(z−1))−1K(z−1)w(t)−N(z−1)

·D−1(z−1)(Y (z−1)− U(z−1)N(z−1))−1

·(X(z−1) + U(z−1)D(z−1))y(t) (6)

これを整理すると

D(z−1)(Y (z−1)− U(z−1)N(z−1))y(t) =

N(z−1)K(z−1)w(t)−N(z−1)

·(X(z−1) + U(z−1)D(z−1))y(t) (7)

y(t)についてまとめると

{D(z−1)(Y (z−1)− U(z−1)N(z−1)) +

N(z−1)(X(z−1) + U(z−1)D(z−1))}y(t) =
N(z−1)K(z−1)w(t) (8)

すなわち

(X(z−1)N(z−1) + Y (z−1)D(z−1))y(t) =

N(z−1)K(z−1)w(t) (9)

よって

y(t) = (X(z−1)N(z−1) + Y (z−1)D(z−1))−1

·N(z−1)K(z−1)w(t) (10)

式 (2)より，閉ループ系は Fig.2で示すように以下で表
すことができる．

y(t) = N(z−1)K(z−1)w(t) (11)

ここで，定値制御を考えた補償器が設計されていれば，
十分に時間が経過した後，出力 y(t)が目標値 w(t)に
追従する．すなわち，閉ループ系 (11)の定常ゲインは
N(1)K(1) = 1となるよう構成されている．また，安
定化補償器 (3)に含まれる設計パラメータU(z−1)は閉
ループ系 (11)に影響を与えないことが分かる．

3 強安定率の提案
前節で述べたように，式 (3)の設計パラメータU(z−1)

を利用すれば，閉ループ系の特性を変えることなく補償
器の特性 (ここでは補償器の極のみ着目する)を変える
ことができる．これまで著者らは，U(z−1)を選定して
補償器を安定化することで強安定系が構成できることを
示し，フィードバックループが切断されたとしても，そ
の開ループゲインが閉ループ系の定常ゲインN(1)K(1)
と等しくなる U(z−1)の条件式を提案した 3) が，計算
された U(z−1)が安定な補償器とならず，強安定系を
構成できない場合があった．言い換えれば，U(z−1)に
課された条件が厳しかったと考えられる．
そこで本章ではこの条件を緩和し，開ループゲイン

が閉ループゲインとどれだけ近いかということを安全
性の一つの指標として考え，これを強安定率として提
案する．

Fig. 3: Open-loop system in RH∞

Fig. 4: Equivalent transformation of Fig.3

まず，Fig.1 で与えられた閉ループシステムの出力
フィードバック信号が切断されて値が 0になったとす
ると，Fig.3に示すように制御入力の式 (3)は次のよう
に与えられる．

u(t) = (Y (z−1)− U(z−1)N(z−1))−1K(z−1)w(t)

(12)

これを式 (1)に代入すると，目標値 w(t)から出力 y(t)
に至る開ループ系の伝達関数は以下で与えられる．

y(t) = N(z−1)D−1(z−1)u(t)

= N(z−1)D−1(z−1)(Y (z−1)− U(z−1)

·N(z−1))−1K(z−1)w(t)

= (Y (z−1)D(z−1)− U(z−1)N(z−1)

·D(z−1))−1N(z−1)K(z−1)w(t) (13)

すると Y (z−1)D(z−1) = 1 − X(z−1)N(z−1) なので
Fig.4に示すような系に書き改めることができる．

y(t) = (1−X(z−1)N(z−1)− U(z−1)N(z−1)

·D(z−1))−1N(z−1)K(z−1)w(t)

= {1− (X(z−1) + U(z−1)D(z−1))N(z−1)}−1

·N(z−1)K(z−1)w(t) (14)

つぎに安定化補償器 (3) の設計パラメータとして
U(z−1) = −αD−1(1)X(1)を選ぶと

y(t) = {1− (X(z−1)− αD−1(1)X(1)D(z−1))

·N(z−1)}−1N(z−1)K(z−1)w(t) (15)

を得る．するとこの系の定常状態は次のように与えら
れる．

y(t) = {1− (X(1)− αD−1(1)X(1)D(1))N(1)}−1

·N(1)K(1)w(t)

= {1− (X(1)N(1)− αX(1)N(1))}−1N(1)

·K(1)w(t)

= (1−X(1)N(1) + αX(1)N(1))−1N(1)

·K(1)w(t)

= (αX(1)N(1) + Y (1)D(1))−1N(1)K(1)w(t)

(16)

ここで 1−X(1)N(1) = Y (1)D(1)を利用した．以上よ
り，閉ループゲインと開ループゲインの比を強安定率
として s(α)とおくと以下の式を得る．

s(α) = (αX(1)N(1) + Y (1)D(1))−1N(1)K(1)



· 1

N(1)K(1)

=
1

αX(1)N(1) + Y (1)D(1)
(17)

すなわち，強安定率 s(α) は開ループゲインそのもの
となり，本研究ではこれを強安定率として定義する．
なお，安定化補償器 (3)の設計パラメータを U(z−1) =
−αD−1(1)X(1)と選べば補償器の特性を変えられるが，
フィードバックループが切断されなければ，閉ループ
系は式 (11)と一致し，目標値応答に影響を与えないこ
とに注意されたい．
もしα = 1と選んで強安定系を構成できれば，フィー

ドバックループが切断されても開ループゲインが閉ルー
プゲインと一致し，定常状態において出力は目標値に
一致する．この場合，強安定率は s(α) = 1となり，本
研究においては系が最も安全であることを意味する．
一方，α = 1では強安定系が構成できなかった場合，

補償器を安定にする αを選定する必要がある．この時，
強安定率 s(α)は 1とはならず，フィードバックループ
が切断された場合の定常状態において，出力が目標値
からずれることを意味している．すなわち，このずれ
が大きいほど，水位制御系における液あふれや温度制
御系における異常な温度上昇の可能性があることを意
味している．まとめると，強安定率 s(α)は 1の場合に
最もよく，そこからのずれが大きいほど安全性が損な
われることを意味している．
最後に，強安定率を利用した設計手順を示す．

1. 既存の制御系を利用するか，新規に制御系を設計
する．

2. 1.の閉ループ安定特性多項式を利用して，制御対
象，制御則を既約分解表現する．

3. αを調整し，強安定率 s(α)がなるべく 1に近い補
償器を設計する．

4 数値例
4.1 既存の制御系の準備

以下では強安定系の構成と強安定率の関係について，
簡単な数値例を通して確認する．前章で示した設計手順
に従い，まず本節で設計する制御系があるものとする．
制御対象を以下の１入力１出力系とする．

A[z−1]y(t) = z−1B[z−1]u(t) (18)

ここで y(t)は出力，u(t)は入力とし，外乱は存在しな
いとする．また，制御目標は目標値 wに出力が一致す
ることとする．さらにA[z−1]，B[z−1]はそれぞれ以下
の多項式で表され，A[z−1]は安定多項式であるとする．

A[z−1] = 1 + a1z
−1 (19)

B[z−1] = b0 (20)

つぎに制御対象の定常状態を考える．出力の定常状態
を y∞，入力の定常状態を u∞とすると以下の関係が成
り立つ．

A[z−1]y∞ = z−1B[z−1]u∞ (21)

ここで ỹ(t) = y(t)− y∞，ũ(t) = u(t)− u∞ と定義し，
定常状態で出力が定値の目標値 wに一致し，y∞ = w
となるとすると，ỹ(t) = y(t) − w と表すことができ
る．式 (18)から式 (21)を減じることで以下の偏差系を
得る．

A[z−1]ỹ(t) = z−1B[z−1]ũ(t) (22)

この偏差系に対し一般化予測制御系 (Generalized Pre-
dictive Control: GPC)6, 7)を構成する．なお，ここで
は簡単化のためGPCの設計パラメータとして予測ホラ
イズンを [N1, N2] = [1, 1]，制御ホライズンをNu = 1，
制御入力の重み係数を λ (= 10)とおく．
制御則の導出に必要な出力予測式 ˆ̃y(t+1|t)を導出す

るため，以下の Diophantine方程式を導入する．

1 = A[z−1]E1[z
−1] + z−1F1[z

−1] (23)

ここで E1[z
−1]，F1[z

−1]はつぎのように与えられる．

E1[z
−1] = 1 (24)

F1[z
−1] = f1

0 ( = −a1) (25)

さらに E1[z
−1]B[z−1]を以下に示すように分割する．

E1[z
−1]B[z−1] = R1[z

−1] + z−1S1[z
−1] (26)

ただし

R1[z
−1] = r0 ( = b0) (27)

S1[z
−1] = s0 ( = 0) (28)

式 (22)の両辺に z1E1[z
−1]を掛け，式 (23)を代入して

整理すると

ỹ(t+ 1) = R1[z
−1]ũ(t) + h1(t) (29)

ここで h1(t)は以下のようにおく．

h1(t) = F1[z
−1]ỹ(t) + S1[z

−1]ũ(t− 1) (30)

外乱が存在しないと仮定しているので ỹ(t+1) = ˆ̃y(t+
1|t)と表せる．また，予測ホライズンおよび制御ホラ
イズンの長さをそれぞれ 1としているので，ここでは
評価関数を以下のように定義できる．

J = {ỹ(t+ 1)}2 + λ{ũ(t)}2 (31)

式 (31)を ũ(t)で偏微分し，その値を 0とおくことで以
下の式を得る．

ũ(t) = −Fp[z
−1]ỹ(t)− Sp[z

−1]ũ(t− 1) (32)

ただし

Fp[z
−1] = (r20 + λ)−1r0F1[z

−1] (33)

Sp[z
−1] = (r20 + λ)−1r0S1[z

−1] (34)

よって

(1 + z−1Sp[z
−1])ũ(t) = −Fp[z

−1]ỹ(t) (35)



定常状態を考え z−1 = 1とすると A[1]y∞ = B[1]u∞

の関係が成立する．そこでK = A[1]
B[1] とすれば

u∞ =
A[1]

B[1]
y∞ = Kw (36)

となる．また ũ(t) = u(t)− u∞，ỹ(t) = y(t)− wと定
義しているので，式 (32)は次のように表される．

(1 + z−1Sp[z
−1])u(t) =

{Fp[z
−1] + (1 + z−1Sp[z

−1])K}w − Fp[z
−1]y(t)

(37)

すなわち以下の制御則を得る．

u(t) =
Fp[z

−1] + (1 + z−1Sp[z
−1])K

1 + z−1Sp[z−1]
w

− Fp[z
−1]

1 + z−1Sp[z−1]
y(t) (38)

つぎに閉ループ系の式を求めるため，以下の式を定義
する．

DP [z
−1] = A[z−1]Sp[z

−1] +B[z−1]Fp[z
−1] (39)

T [z−1] = A[z−1] + z−1Dp[z
−1] (40)

式 (38)を式 (18)に代入し，式 (39)，(40)を用いるこ
とで，以下の閉ループ系の式を得る．

y(t) =
z−1B[z−1]{Fp[z

−1] + (1 + z−1Sp[z
−1])K}

T [z−1]
w

(41)
ここで，閉ループ特性多項式 T [z−1]が安定となるよう
N1，N2，Nu，λを設計する必要があるが，本報告では
安定な閉ループ特性多項式が得られているとする．具
体的には，制御対象を

y(t) =
0.8z−1

1− 0.9z−1
u(t) (42)

とおくと，制御則および閉ループ系は以下で与えられる．

u(t) = 0.1927w − 0.0677y(t) (43)

y(t) =
0.1541z−1

1− 0.8459z−1
w (44)

このとき，強安定系が構成されるとともにその閉ルー
プゲインは 1に設計される．また目標値を 1としたと
き，Fig.5が示すように目標値追従が達成される．これ
に対し，フィードバックループが 500ステップ目で切
断され，開ループ系となった場合の制御則と開ループ
系は次のようになる．

u(t) = 0.1927w (45)

y(t) =
0.1542z−1

1− 0.9z−1
w (46)

この系は安定であるが，開ループゲインが 1.542とな
り，出力応答の定常値が目標値から大きくずれてしま
い，安全性の観点から好ましくない．
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Fig. 5: Output response (upper) and Input response
(lower)

4.2 既存の制御系の既約分解表現
前節の問題に対し，本節では既約分解表現を利用し

て制御則を拡張する．まず，前節で得られた安定な閉
ループ特性多項式を利用して，制御対象を次のように
既約分解表現する．

N(z−1) =
0.8z−1

1− 0.8459z−1
(47)

D(z−1) =
1− 0.9z−1

1− 0.8459z−1
(48)

また，X(z−1),Y (z−1)をつぎのように与えると，それ
らは Bezout等式 (2)の解となる．

X(z−1) = Fp[z
−1] ( = 0.0677) (49)

Y (z−1) = 1 + z−1Sp[z
−1] ( = 1) (50)

ここで式 (3)の設計パラメータを

K(z−1) = Fp[z
−1] + (1 + z−1Sp[z

−1])K

= 0.1927 (51)

U(z−1) = −αD−1(1)X(1)

= −0.1043α (52)

とおくと，式 (43)を拡張した制御則が次のように与え
られる．

u(t) =
0.1927× (1− 0.8459z−1)

1− (0.8459− 0.0834α)z−1
w

− (0.0677− 0.1043α)− (0.0572− 0.0939α)z−1

1− (0.8459− 0.0834α)z−1
y(t)

(53)

なお，式 (53)で与えられる閉ループ系は式 (11)より α
の値とは無関係に式 (44)と一致する．また，α = 0と
選べば拡張した制御則は式 (43)と一致する．さらに，
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Fig. 6: Output response (upper) and Input response
(lower)

フィードバックループが切断された場合の制御則とそ
の開ループ系は以下で与えられる．

u(t) =
0.1927× (1− 0.8459z−1)

1− (0.8459− 0.0834α)z−1
w (54)

y(t) =
0.1541z−1 × (1− 0.8459z−1)

(1− 0.9z−1){1− (0.8459− 0.0834α)z−1}
w

(55)

これらの式より，αを適切に調整すれば，強安定系の
設計と開ループゲイン，すなわち強安定率の調整を行
えることが分かる．

4.3 強安定率の調整

強安定率 s(α)は式 (17)より制御対象および補償器
の既約分解表現 N(z−1)，D(z−1)，X(z−1)，Y (z−1)
から得られる．これらは式 (47)，(48)，(49)，(50)よ
り N(1) = 5.1902，D(1) = 0.6488，X(1) = 0.0677，
Y (1) = 1である．よって以下の強安定率の式を得る．

s(α) =
1

αX(1)N(1) + Y (1)D(1)

=
1

0.3512α+ 0.6488
(56)

式 (53)より，拡張した制御則が安定となる αの範囲は
−1.8472 < α < 22.1216であり，この範囲から s(α)が
最も 1に近くなる αを選べばよい．この例では α = 1
の時に s(1) = 1となり，フィードバックループが切断
されたとしても，その開ループゲインは閉ループゲイ
ンと等しく 1になる．すなわち定常状態において開ルー
プ系の出力が目標値に一致し，安全性の観点から好ま
しい結果が得られていることが分かる．なお，Fig.6に
α = {0, 0.3, 0.7, 1, 1.5}を選んだ際の応答を示す．こ
の図からも αによって強安定率が調整できていること
が確認できる．

5 おわりに
本報告では強安定率の概念について提案するととも

に，その効果について簡単な数値例を通して確認した．
今後は強安定率を利用した制御系設計法についてさら
に検討を進める．
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