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Abstract– This paper proposes iterative calculation method for representing constraint motion of robot manipulator
utilizing inverse dynamic calculation of Newton-Euler method, solving method of forward dynamics problem. This
method has a merit that enables us to calculate forward dynamics recursively with no use of explicit representation
of equation of motion. Then, we applied this method to 3-link manipulator and evaluated its validity by numerical
simulations.
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1 緒言
これまで，マニピュレータの動力学について，シミュ
レーションによる動力学解析や制御手法の検証等を目
的に研究がされてきている．マニピュレータの動力学
の運動方程式の２つの主要な導出法として Lagrange法
と Newton-Euler法（NE法）がある 1)．

NE法は衛星のような開鎖のツリー構造 2) や，人体
のような生物学的構造 3)，4) に適応されてきたが，計
算量が多く実時間での使用には動力学の計算が遅すぎ
た．そこで 1980年に計算量を減らすために再公式化さ
れ 5)，1982年にWalker，OrinによってNE法を用いた
順動力学問題の解法とその有効性が示された 6)．その
後，NE法は非剛性マニピュレータのモデルへの応用 7)

等，様々な所で利用されている．
今回，私達はNE法の逆動力学計算を利用したロボッ
トマニピュレータの拘束運動を表現するための繰り返
し計算法を提案し，順動力学計算の解法を示す．NE法
にはそれぞれのリンクを単一物体として扱い，ロボッ
トの実際の運動を生成しない内力，内部トルクの計算
を可能であるというメリットがあるため，ヒューマノ
イドロボットの足の衝突・拘束運動時の各関節にかか
る内力計算等の応用が考えられる．私達はこの方法を
３リンクマニピュレータに適応し，その妥当性を数値
シミュレーションにより評価した．

2 拘束運動時のNewton-Euler法による運動
方程式の導出

Fig. 1に示すような地面から手先に抗力 fn と摩擦
力 ft の働く n本の剛体リンクを持つ n自由度の直列
マニピュレータを考え，link-iに固定された座標系 Σi

に基づき運動方程式を導出する．手先が地面に拘束さ
れているときの拘束条件は手先の位置ベクトルを r(q)
とし，式 (1)として定義できる．

C(r(q)) = 0 (1)

ここで拘束運動について次の 2 つの仮定を行う．(i)
抗力 fn，地面と足の間に作用する摩擦力 ft は直交
する．(ii) ft は抗力に比例して決定される：ft =
Kfn (K は摩擦係数 : 0 < K ≤ 1)．

まず，Newton-Euler法の順動力学計算として根元の
リンクから先端のリンクに向かって link-iの関節角速度
iωi，関節角加速度 iω̇i，原点における並進加速度 ip̈i，
質量中心における並進加速度 is̈i を以下の式から計算
する．

iωi = i−1RT
i

i−1ωi−1 + ezi
q̇i (2)

iω̇i = i−1RT
i

i−1ω̇i−1 + ezi q̈i + iωi × (ezi q̇i) (3)

ip̈i = i−1RT
i

{
i−1p̈i−1 + i−1ω̇i−1 × i−1p̂i

+ i−1ωi−1 × (i−1ωi−1 × i−1p̂i)
}

(4)
is̈i = ip̈i + iω̇i × iŝi + iωi × (iωi × iŝi) (5)

ここで，i−1Ri は Σi−1 から Σi への回転行列，ezi
=

[0, 0, 1]Tは link-iの回転軸を表す単位ベクトル，i−1p̂i

は Σi−1 の原点から Σi までの位置ベクトル，iŝi は Σi

の原点から link-iの質量中心までの位置ベクトルを表
している．

次に逆動力学計算に基づいて，先端のリンクから根
元のリンクに向かって link-iにおけるNewtonの方程式
及び Eulerの方程式を以下の式 (6)∼(8)に基づいて導出
する．if i,

ini はそれぞれリンク (i − 1)からリンク i
に加えられる力とモーメントを表す．手先からは地面
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Fig. 1: n-link manipulator



から受ける抗力・摩擦力の反作用の力が発生するため，
n+1fn+1 は式 (6)のように計算すればよい．

n+1fn+1 = −0RT
n+1

{ (
∂C
∂r

)
∥∥∂C

∂r
∥∥fn − ṙ

‖ṙ‖
Kfn

}
(6)

if i = iRi+1
i+1f i+1 + mi

is̈i (7)
ini = iRi+1

i+1ni+1 + iIi
iω̇i + iωi × (iIi

iωi)

+ iŝi × (mi
is̈i) + ip̂i+1 × (iRi+1

i+1f i+1)
(8)

抗力 fnは以下の式より与えられる．詳しい導出方法は
次章で述べる．

fn = A−1(a − dTτ ) (9)

全ての関節が izi軸回りの回転を行うように Σiを定め
た場合，単位ベクトル ez = [0, 0, 1]Tによって，各回転
関節の運動方程式が以下のように計算される．

τi = (ezi)
T ini + diq̇i (10)

i = 1, · · · , nにおける式 (10)を一般的な表現に改める
と式 (11)を得る．
M(q)q̈ + h(q, q̇) + g(q) + Dq̇ − (jc − jtK)fn = τ

(11)

ここで，M(q)は n×nの慣性行列, h(q, q̇)，g(q)はそ
れぞれ遠心力/コリオリ力の項及び重力項を表す n × 1
のベクトル，Dは関節の粘性摩擦係数を表す n× nの
対角行列D = diag[d1, d2, · · · , dn]，τ は n × 1の入力
トルクベクトル，q = [q1, q2, · · · , qn]T は n × 1の関
節角度ベクトルである．また，jcと jtは以下のように
定義される．

jc =

„

∂r

∂qT

«T
`

∂C
∂r

´

‚

‚

∂C
∂r

‚

‚

, jt =

„

∂r

∂qT

«T
ṙ

‖ṙ‖ (12)

3 抗力 fnの導出
本章では抗力 fn の導出方法について述べる．マニ

ピュレータの手先拘束状態の運動方程式，拘束条件は
式 (11)，(1)で表される．式 (1)を時間 tで２階微分し，
q̈の拘束条件を求めると，

q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇ +

(
∂C

∂qT

)
q̈ = 0 (13)

が得られる．マニピュレータが常に拘束面に拘束され
るためには，式 (11)の解 q(t)が時間 tに無関係に式 (1)
を満たさなければならない．式 (1)の時間微分によって
得られた式 (13)を満たす q̈ と式 (11)の q̈ が同じ値を
とるとき，式 (11)の q(t)は式 (1)を満たすことになる
8)．まず，式 (11)，(13)から q̈を消去すると
(

∂C

∂qT

)
M−1

(
∂C

∂qT

)T
fn∥∥∥∥
∂C

∂rT

∥∥∥∥

=
(

∂C

∂qT

)
M−1

(
J t

TKfn + Dq̇ + h + g − τ
)

−q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇ (14)

が得られる．ここで，

(∂C/∂qT)M−1(∂C/∂qT)T = mc (15)

と置くことにより，

mcfn =
∥∥∥∥

∂C

∂rT

∥∥∥∥
{(

∂C

∂qT

)
M−1(JT

t Kfn + Dq̇

+h + g − τ ) − q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇

}
(16)

となり，また

dT =
∥∥∥∥

∂C

∂rT

∥∥∥∥
(

∂C

∂qT

)
M−1 (17)

と置くと式 (16)は以下のようになる．
mcfn = dTjtKfn − dTτ + dT {Dq̇ + h + g}

−
∥∥∥∥

∂C

∂rT

∥∥∥∥q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇ (18)

ここで

a = dT {Dq̇ + h + g} −
∥∥∥∥

∂C

∂rT

∥∥∥∥q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇

(19)

とすると
mcfn = dTjtKfn − dTτ + a (20)

となる．さらに
A = mc − dTjtK (21)

と置くことにより，
Afn = a − dTτ (22)

となり，拘束点の抗力 fn は入力トルク τ との代数方
程式から求めることが出来る．

3.1 ヤコビ行列の微分の導出
式 (19)の右辺の第二項目を式変形をすると式 (23)の
ようになる．ただし，手先位置 rの qに関するヤコビ
行列を (∂r/∂qT) = J と置く．

q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇ =

dqT

dt

[
∂

∂q

(
∂C

∂rT

∂r

∂qT

)]
q̇

=
d

dt

(
∂C

∂rT
J

)
q̇

=
[

d

dt

(
∂C

∂rT

)
J +

∂C

∂rT

dJ

dt

]
q̇

(23)

よって aを数値計算で求めるにはヤコビ行列の微分を
求める必要がある．ここでは，その導出方法について
述べる．
まず，ヤコビ行列 J は次のように導出される．

J =
[

0z1 × 0pE,1
0z2 × 0pE,2 · · · 0zn × 0pE,n

0z1
0z2 · · · 0zn

]

(24)

ここで，0pEはマニピュレータの根元から手先までのベ
クトルを表し，0zi，0pE,iは以下のように定義される．

0zi = 0Ri
iez (25)

iez = (0, 0, 1)T (26)
0pE,i = 0pE − 0pi (27)



式 (25),(27)の両辺を時間 tで微分すると以下の式が得
られる．

0żi = 0Ṙi
iez + 0Ri

iėz

= 0Ṙi
iez

= 0ωi × 0Ri
iez (28)

0ṗE,i = 0ṗE − 0ṗi

= Jpq̇ − Jpiq̇ (29)

ただし，Jpi ∈ R3×n は，pi の q に関するヤコビ行列
の最初の行から第 3行目までの行列を表す．
次に 0zi × 0pE,i を時間 tで微分すると式 (28)，(29)

より以下のようになる．

d
(
0zi × 0pE,i

)

dt
=0żi × 0pE,i + 0zi × 0ṗE,i

=
(
0ωi × 0Ri

iez

)
× 0pE,i

+ 0zi × (Jpq̇ − Jpiq̇) (30)

したがって，ヤコビ行列の微分は以下の式から計算す
ることができる．

J̇ =
[(

0ω1×0R1
1ez

)
×0pE,1+0z1×(Jpq̇ − Jp1q̇) · · ·

0ω1 × 0R1
1ez · · ·

(
0ωn×0Rn

nez

)
×0pE,n + 0zn×(Jpq̇ − Jpnq̇)

0ωn × 0Rn

]

(31)

4 順動力学問題の解法
多リンク・多自由度を有する対象物に関して，式 (11)
に含まれるM(q), h(q, q̇), g(q)を直接計算すること
は一般に困難である．しかし，順動力学問題の解法を
用いることで効率的な数値計算の実行が可能となる．
まず b = h(q, q̇) + g(q) + Dq̇として，式 (11)の左

辺を τ p と置く．

M(q)q̈ + b − (jc − jtK)fn = τ p (32)

式 (7)–(10) に示す逆動力学計算を τ p =
INV (q, q̇, q̈, g, fn,K)と表現する時，

M(q)q̈ + b − (jc − jtK)fn = INV (q, q̇, q̈, g, fn,K)
(33)

が成立する．ここで，式 (33)に q̈ = 0, fn = 0を代入
すると b = INV (q, q̇,0, g, 0,K)が得られ，次に q̇ =
0, q̈ = ei, g = 0, fn = 0を式 (33)に代入するとM i =
M(q)ei = INV (q,0, ei,0, 0,K)となる．M i は慣性
行列の第 i列を表すベクトル，ei は第 i番目の要素に
‘1’ を持つ単位ベクトル ei = [0, · · · , 1(i), 0, · · · , 0]Tで
あり，M(q)の要素が列毎に計算される. そして，jc,
jt は以下のようにして求めることができる．

jc = INV (q,0,0, 0,−1, 0) (34)

jc − jt = INV (q,0,0, 0,−1, 1) = τ̃ (35)

jt = jc − τ̃ (36)

これより式 (17)∼(19)のA, a, dTが求まるため，式 (22)
より fn を計算することができる．

ここで，bn = b− (jc − jtK)fnと置くと，q̈ = 0を
代入して bn = INV (q, q̇,0, g, fn,K)が得られる．し
たがって，拘束運動時の各リンクの角加速度 q̈は以下
のように計算される．

q̈ = M−1(τ − bn) (37)

5 数値シミュレーション
本章では第 2章∼第 4章で述べた方法で拘束条件式

(1)を満たしながら運動することを 7つのシミュレー
ションによって確認した．シミュレーション環境はプ
ログラム作成のため “Borland C++ Builder Professional
Ver. 5.0”を用い，表示には “OpenGL Ver. 1.5.0”を用い
た．尚，サンプリングタイムは 1.0× 10−2 [sec]，地面
の摩擦係数は ft = 0.2fn である．
シミュレーションは Fig. 2で示す 3リンクマニピュ
レータで行う．物理パラメータは，それぞれ基準のリン
クの質量をmi = 1.0[kg]，長さを li = 0.5[m]，各関節
の粘性摩擦係数を di = 3.0[N·m·s/rad]と設定し，Fig.
2の姿勢（q = [−π

6 ,−π
3 ,−π

3 ]T）を初期姿勢とする．
まず，入力トルク τ を変化させてシミュレー
ションを行う．入力に (i)τ = [−3,−3,−3]T，
(ii)τ = [3 sin 2π

10 t, 3 sin 2π
10 t, 3 sin 2π

10 t]T，(iii) τ =
[−3 cos 2πt,−3 sin 2πt, 3 cos 2πt]T を与えたときのリ
ンク 3の先端の z座標 z3と各リンクの角度 q1，q2，q3

の値の時間変化をそれぞれ Figs. 3∼5に示す．これら
のグラフから任意の入力を与えても常に拘束条件を満
たすことがわかる．
次に，各リンクの質量miと各関節の粘性摩擦係数 di

をそれぞれ変化させて，自由応答シミュレーションを
行う．(iv) 各リンクの質量を 2倍にしたとき，(v)各リ
ンクの質量を 1/2倍にしたとき，(vi)各関節の粘性摩擦
係数を 2倍にしたとき，(vii) 各関節の粘性摩擦係数を
1/2倍にしたときのリンク 3の先端の z座標 z3 と各リ
ンクの角度 q1，q2，q3の値の時間変化をそれぞれ Figs.
6∼9に示す．これらのグラフから各リンクの質量，各
関節の粘性摩擦係数を変化させても常に拘束条件を満
たすことがわかる．
以上のシミュレーションから式 (11)のパラメータを
変化させたときに，今回提案する繰り返し計算法で拘
束状態を表現することができることが確認できた．

6 結言
本論文では，Newton-Euler法の逆動力学計算を利用
した拘束運動を表現するための繰り返し計算法につい
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Fig. 2: 3-link manipulator (initial angle)
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Fig. 3: Hand position and joint angle (i)
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Fig. 4: Hand position and joint angle (ii)

て提案し，順動力学計算の解法について示した．また
シミュレーション結果から，この計算法によりマニピュ
レータの手先拘束を表現することを示した．
今後の方針としては，今回提案した計算法について

拘束条件が 2つ以上ある多点拘束の場合に拡張し，数
値シミュレーションにより評価していくことが挙げら
れる．
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Fig. 5: Hand position and joint angle (iii)
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Fig. 6: Hand position and joint angle (iv)
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Fig. 7: Hand position and joint angle (v)
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Fig. 8: Hand position and joint angle (vi)
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Fig. 9: Hand position and joint angle (vii)


