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Abstract: The objective of this research is to analyze humanoid’s jumping and landing motions on a view point of arms’

dynamical coupling onto jumping. Humans seem to use arms’ swinging for walking or running effectively and jump

highly by swinging up arms high. So, we gave input torques to arms in such a way as to swing arms similar to humans,

and changed timing to start swinging them, comparing them with humanoid’s motion that does not swing the arms through

numerical simulation. Then we have confirmed that appropriate swinging motions of arms help the jumping to be higher

than those without arms’ swinging.
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1. INTRODUCTION
Human uses arms effectively in various situations,

which indicates that we can control humanoid robot ef-

fectively by using dynamical coupling of arms. However,

there is little study about arms’ beneficial use. Therefore,

we focus on humanoid’s motion with arms’ swing.

Although model of humanoid is simplified in lots of

studies, [1] considers many kinds of gaits including point-

contacting and surface-contacting of feet. Our research

has begun from such view point of [1] as aiming at de-

scribing gait’s dynamics as correctly as possible.

There are two different approaches of humanoid re-

searches such as a real experiment view point and

simulation-based one when discussing dynamical walk-

ing motion of robot. Using software simulation, it may

fall in meaningless discussions unless the dynamical

model describes correctly the real physical dynamical be-

havior. In line with this thinking way, we have discussed

a dynamical model of humanoid’s walking motion in-

cluding slipping, bumping and tipping [2]. Using cor-

rect model, simulations enables us to obtain every piece

of data without real sensors and can discuss about phe-

nomenon being hard to obtain from real machine, e.g.

falling and crashing to floor when walking and jump-

ing. So we think simulation is a convenient tool in dis-

cussing complicated walking dynamics before realizing

real robot’s walking.

We made humanoid’s model which can describe jump-

ing and landing motions while utilizing dynamical cou-

plings of arms’ swinging. Although in [3] and [4] hu-

man jumping has been modeled, both models never con-

tain arms and then arms’ influence is out of concerns.

In vertical jump, human swings up of arms from lower

position and makes them stop at head’s height to jump

highly. So we gave input to arms in such a way as to

perform above mentioned arms’ swing motion, and sim-

ulated jumping motion of humanoid robot. The results

show that the humanoid robot can jump higher than with-

out them. Moreover, this report explored jumping mo-

tion simulations with various timing to starting swinging

the arms, and discusses conditions that the humanoid can
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Fig. 1 Model of humanoid robot

jump highly by verifying the motions through contacting

normal force against ground and motion energy.

2. DYNAMICAL HUMANOID MODEL
OF JUMPING

Humanoid model and definition of joint angle qi and

position di are shown in Fig. 1. Our model represents

rigid whole body—feet, torso, arms and so on—having

17 degree-of-freedom.

In this paper, link-1 is defined as ”supporting-foot”

and link-7 is defined as ”floating-foot” or ”contacting-

foot” according to the walking state.
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2.1 Derivation of equation of motion by Newton-Euler

method

We derive the dynamics of humanoid being simu-

lated as a serial link manipulator having ramifications by

Newton-Euler method [7]. We derive equation of motion

based on each coordinate system Furthermore equation

of motion about position d1 and d2 are derived as two

prismatic links which length is d1 and d2.

We first have to calculate relations of positions, veloc-

ities and accelerations between links as forward kinemat-

ics procedures from bottom link to top link. Serial link’s

acceleration of the origin ip̈i and acceleration of the cen-

ter of mass is̈i based on Σi fixed at link-i are obtained as
follows.

ip̈i = i−1RT
i

{

i−1p̈i−1 + i−1ω̇i−1 ×
i−1p̂i

+ i−1ωi−1 × (i−1ωi−1 ×
i−1p̂i)

}

(1)

is̈i = ip̈i + iω̇i ×
iŝi + iωi × (iωi ×

iŝi) (2)

Here, iωi is serial link’s angular velocity,
iω̇i is angular

acceleration, i−1Ri means orientation matrix,
i−1p̂i rep-

resents position vector from the origin of link-i− 1 to the
one of link-i and iŝi is defined as gravity center position

of link-i.
After the above forward kinematic calculation has

been done, contrarily inverse dynamical calculation pro-

cedures is the next from top to base link. Newton equa-

tion and Euler equation of link-i are represented by Eqs.
(3), (4) when iIi is defined as inertia tensor of link-i.

if i = iRi+1
i+1f i+1 + mi

is̈i (3)

ini = iRi+1
i+1f i+1 + iIi

iω̇i + iωi × (iIi
iωi)

+ iŝi × (mi
is̈i) + ip̂i+1 × (iRi+1

i+1f i+1)
(4)

Then, rotational equation of motion of link-i is obtained
as Eq. (5) by making inner product of induced torque

onto the link-i unit vector ezi
= [0, 0, 1]T around rota-

tional axis.

τi = (ezi
)T ini + Diq̇i (5)

Finally, we get equation of motion as Eq. (6).

M(q)q̈ + h(q, q̇) + g(q) + Dq̇ = τ (6)

M(q) is inertia matrix, h(q, q̇) and g(q) are vectors

which indicate Coriolis force, centrifugal force and grav-

ity, D = diag[D1, D2, · · · , Dn] is matrix which means
coefficients of joints’ viscous friction and τ is input

torque. q = [d1, d2, q1, q2, · · · , q15]
T is vector which in-

dicate joint angle and position.

2.2 Model of No-foot Contacting the Ground or

Single-foot Standing

When we assume humanoid as separate manipulator,

we can get equation of motion by discussion of subsec-

tion 2.1 as for serial connecting link. However, humanoid

of Fig. 1 has two ramifications, so following equations

are used as for link-4, 8, 12, 15.
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Fig. 2 Phase (IV) and (V)

First, in forward kinematics calculation, velocity and

acceleration of link-4 transmit to link-8, so 8p̈8 is ob-

tained as Eq. (7).

8p̈8 = 4RT
8

{

4p̈4+4ω̇4×
4p̂8+4ω4×(4ω4×

4p̂8)
}

(7)

On the other hand, velocity and acceleration of link-8

transmit to link-9, link-12 and so 9p̈9 and
12p̈12 are ob-

tained in a similar way to Eq. (7).

Next, in inverse dynamical calculation, force and

torque of both link-5 and link-8 are exerted on link-4, so

both effects influence onto link-4 as Eqs. (8), (9).
4f4 =4R5

5f5 + 4R8
8f8 + m4

4s̈4 (8)

4n4 =4R5
5n5 + 4R8

8n8 + 4I4
4ω̇4

+ 4ω4 × (4I4
4ω4) + 4ŝ4 × (m4

4s̈4)

+ 4p̂5 × (4R5
5f5) + 4p̂8 × (4R8

8f8) (9)

Force and torque of both link-9, 12 and 15 are exerted

on link-8, so equation of Newton and Euler for link-8 are

obtained in a similar way to Eqs. (8), (9).

In terms of equation of motion for humanoid robot,

equation of motion Eq. (6) mean the motion standing

on single foot like Fig. 2 (a). Here, if supporting-foot

is point-contacting and assumed to be without slipping,

joint angle can be thought as q = [q1, q2, · · · , q15]
T ∈

R15. This walking pattern is depicted in Fig.2 (a). When

supporting-foot should get off the ground as shown in

Fig. 2 (b), the state variable for the foot’s position d1 and

d2 are added to q, thus q = [d1, d2, q1, q2, · · · , q15]
T ∈

R17.

As above stated, in the model of this paper, dimen-

sion of variable changes depending on the gate. So, in

the following section, when supporting-foot is surface-

contacting as shown in Fig. 3 (a), link-1 is considered

part of the ground and q1 can be deleted from q, thus

q = [q2, · · · , q15]
T ∈ R14.

2.3 Model with Point-contacting Constraints

Given a lifting foot contacts with a ground while keep-

ing Phase (IV), Phase (III) appears like Fig. 3 b with

the forefoot’s z, y-axis position being constrained by the
ground. This constraint is represented by Eq. (10), where

r(q) represents forefoot’s position in ΣW .

C1z(r(q)) = 0, C1y(r(q)) = 0 (10)

While constrained motion, equation of motion is ob-
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tained as Eq. (11)

M(q)q̈ + h(q, q̇)+g(q) + Dq̇

= τ + jT
czfnz + jT

cyfcy (11)

fnz , fny is constraint force, and jT
cz , jT

cy are defined as

follows.

jT
cz =

(

∂C1z

∂qT

)T

∣

∣

∣

∣

∣

∣

∂C1z

∂qT

∣

∣

∣

∣

∣

∣

, jT
cy =

(

∂C1y

∂qT

)T

∣

∣

∣

∣

∣

∣

∂C1y

∂qT

∣

∣

∣

∣

∣

∣

(12)

Moreover, Eq. (10) are differentiated by time to times,

then we can derive the constraint condition of q̈.
(

∂C1z

∂qT

)

q̈ + q̇T

{

∂

∂q

(

∂C1z

∂qT

)}

q̇ = 0 (13)

(

∂C1y

∂qT

)

q̈ + q̇T

{

∂

∂q

(

∂C1y

∂qT

)}

q̇ = 0 (14)

The q̈ in Eq. (11), Eq. (13) and Eq. (14) should be

identical so the time solution of Eq. (13) and Eq. (14)

be under the constraint of Eq. (10). Then the following

simultaneous equation of q̈ and the fnz , fny have to be

maintained during the contacting period of the motion.

Here, the fnz and fny are decided dependently to make

the q̈ in Eq. (11), Eq. (13) and Eq. (14) to be identical.










M(q) −jT
cz −jT

cy

∂C1z

∂qT
0 0

∂C1y

∂qT
0 0















q̈

fnz

fny





=









τ − h(q, q̇) − g(q) − Dq̇

−q̇T
{

∂
∂q

(

∂C1z

∂qT

)}

q̇

−q̇T
{

∂
∂q

(

∂C1y

∂qT

)}

q̇









(15)

2.4 Model with Surface-contacting Constraints

When the forefoot’s sole surface contacts to the ground

as shown Fig. 4 (a), another constraint emerges besides
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Fig. 3 Phase (II), (III) and (IV’)
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Fig. 4 Phase(I) and (II’)

the z-axis constraint C1z and the y-axis constraint C1y

defined by Eq. (10) so forefoot’s angle has to be kept as

zero, that is C2(r(q)) = 0, then the plural constraints are

C(r(q)) =





C1z(r(q))
C1y(r(q))
C2(r(q))



 = 0, (16)

where in this case C2(r(q)) = qe = q1 + q2 + · · ·+ q7 =
0. Then, robot’s equation of motion with external forces
fnz , fny and τn corresponding to C1z , C1y and C2 can

be derived by the same procedures as Eq. (11):

M(q)q̈+h(q, q̇) + g(q) + Dq̇

= τ + jT
czfnz + jT

cyfny + jT
r τn, (17)

where jr is

jT
r =

(

∂C2

∂qT

)T(

1/

∥

∥

∥

∥

∂C2

∂qT

∥

∥

∥

∥

)

. (18)

Differentiating by time two times Eq. (16), and combin-

ing it with Eq. (17), we get,








M(q) −jT
cz −jT

cy −jT
r

∂C1z/∂qT 0 0 0
∂C1y/∂qT 0 0 0
∂C2/∂qT 0 0 0

















q̈

fnz

fny

τn









=















τ − h(q, q̇) − g(q) − Dq̇

−q̇T
{

∂
∂q

(

∂C1z

∂qT

)}

q̇

−q̇T
{

∂
∂q

(

∂C1y

∂qT

)}

q̇

−q̇T
{

∂
∂q

(

∂C2

∂qT

)}

q̇















. (19)

3. JUMPING GAIT TRANSITION

Fig. 5 denotes bipedal jumping gait transition. In the

phase that has ramification, the gait is switched to next

phase in case of auxiliary written switching condition be-

ing satisfied. What the authors want to emphasize here is

that the varieties of this transition completely depend on

the solution of dynamics shown as Eqs. (6), (15), (19).

Therefore, we cannot predetermine the jumping gaits pat-

tern, contrarily it will be depended on the initial condi-

tions of the robot, input torque, the shape of the ground

and so on.

3.1 Heel’s detaching condition

A condition that heel of supporting-foot detaches from

the ground in Fig. 5 (I), (II′) to (II), (III) is discussed.

For this judging, 2f2 and 2n2 calculated from Eqs. 3,

4 in case of i = 2 are used. Firstly, coordinates of 2f2

and 2n2 represented by Fig. 6 (a) are converted from

Σ2 to ΣW . Then, projection to z-axis of the force and
projection to x-axis of the torque are derived by using

unit vector ex = [1, 0, 0]T and ez = [0, 0, 1]T as: Wf2z
=

eT
z (WR2

2f2),
Wn2x

= eT
x (WR2

2n2) like Fig. 6 (b).
Given that supporting-foot’s contacting points are to

be two of toe and heel as shown Fig. 6 (c), when forces

acting on the toe and heel are defined as ff , fr, these

forces must satisfy the following equations.
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Fig. 5 Phase and gait’s transition

Wf2z
= ff + fr (20)

Wn2x
= −ff · lf + fr · lr (21)

We can calculate ff and fr as Eq. (22) and supporting-

foot begins to rotate around the toe like Fig. 6 (d) when

value of fr becomes negative.

ff, r =
lr ·

Wf2z

lf + lr
±

Wn2x

lf + lr
(22)

3.2 Bumping

When floating-foot attaches to ground, we need to con-

sider bumping motion as Fig. 5 (IV) to (III). So we rep-

resented completely inelastic collision between foot and

the ground by using the method introduced in [1].

First, by integrating Eq. (11) in time, equation of strik-

ing moment can be obtained as follows.

M(q)q̇(t+) = M(q)q̇(t−) + jT
czFimz + jT

cyFimy

(23)

Eq. (23) describes the bumping in z, y-axis of ΣW be-

tween the tiptoe and the ground. q̇(t+) and q̇(t−) are
angular velocity after and before the strike respectively.

Fim = limt−→t+
∫ t+

t−
fndt means impulse of bumping.

Motion of the robot is constrained by the followed equa-

tion that is given by differentiating C1 by time after the

strike.
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Fig. 6 Force and torque acting on supporting-foot

∂C1z

∂q
q̇(t+) = 0,

∂C1y

∂q
q̇(t+) = 0 (24)

Then, the equation of matrix formation in the case of

heel’s bumping can be obtained as follows.




M(q) −jT
cz −jT

cy

∂C1z/∂qT 0 0
∂C1y/∂qT 0 0









q̇(t+)
Fimz

Fimy





=





M(q)q̇(t−)
0
0



 (25)

4. NUMERICAL SIMULATION

This section describes about input torque for jump-

ing and simulation outcome. Under the environment that

sampling time was set as 3.0 × 10−3 [sec]. In regard to

simulation environment, we used ”Borland C++ Builder

Professional Ver. 5.0” to compile simulation program and

”OpenGL” to display humanoid robot’s time-transient

configurations.

4.1 Input torque

Three kinds of input torque for jumping, landing and

in the air are given.

Input torque for jumping is presented as Eqs. (26) ∼

(29). Jh is Jacobian matrix from supporting-foot to head.

fh is force that tries to pull head toward upper direction

as Eq. (27), kph is proportional gain, yh head position in

traveling direction, and yhd is its desired position. Also

weight of leg torque τ2 ∼ τ4 is tuned by setting kh1 ∼

kh3 of Kh presented as Eq. (28).

τ =KhJT
h fh (If q3 ≥ 1.0[rad]) (26)

fT
h =[0, kph (yhd − yh) , fhz] (27)

Kh =diag[kh1, kh2, kh3, 1, · · · , 1] (28)

τi =kdh(0 − q̇i) (If q3 < 1.0[rad]) (29)

When knee joint angle drops to below 1.0 [rad],

torques trying to still robot as Eq. (29) is given to each
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Fig. 8 Center of gravity zg

joint and thereby robot jumps using ground reaction. kdh

is differential gain.

After both feet detach from the ground, PD controller

presented as Eq. (30) is used for maintaining desired pose

in the air. kpp is proportional gain, kdp is differential gain

and qdi is desired joint angle.

τi = kpp(qdi − qi) + kdp(0 − q̇i) (30)

Input torque for landing is presented as Eq. (31). Kpl

is proportional gain, Kdl is differential gain and rd is

desired head position.

τ = JT
h (Kpl(rd − r) + Kdl(0 − ṙ)) (31)

4.2 Jumping Simulation

Each parameter is set up as follows, and jumping sim-

ulation without arms’ swing was conducted.

Jumping

kph = 20.0, yhd = 0.5[m], fhz = 300[N ]

kh1 = kh2 = kh3 = 4.0, kdh = 30

In the air

kpp = 30, kdp = 3

qdi = [qd2, · · · , qd8, qd15]

= [0.1, 0.4,−0.6, 0.6,−0.4,−0.1, 0.0, 0.0]

Landing

Kpl = diag[0, 500, 1700], Kdl = diag[0, 100, 500]

rd = [0.0,−0.2 + d2, 1.9]T

Figure 8 shows time profile of center of gravity [CoG]

excluding both arms. Here, we define jumping height in

Fig. 8 as between position of CoG at the moment that

both feet detach from the ground and position of CoG in

the most highest position.

Next jumping simulation with arms’ swinging was

conducted. Arms’s input torques are given as follows.

Table 1 Jumping height and time of getting off the

ground

ta [sec] Jumping height [m] Time of getting off [sec]

No swinging 0.330 0.132

0.00 0.375 0.141

0.02 0.347 0.138

0.04 0.320 0.135

0.06 0.313 0.135

If ta ≤ t < ta + 0.12

τ11,14 = 100, τ12,15 = 60, τ13,16 = 10 [N · m] (32)

If ta + 0.12 ≤ t < ta + 0.17

τ11,14 = −150, τ12,15 = −75, τ13,16 = −10 [N · m]

(33)

Equation (32) represents the input torque for swing-

ing up of arms, and Eq. (33) represents it for mak-

ing arms stop at head’s height. ta is a time of starting

in swinging motion. These input torques were deter-

mined through a trial-and-error processes in such a way

as to make the arms’ swinging motion be similar to those

jumping with arms motions. The value of ta is swept

in step of 0.02 [sec] within a range from 0.00 to 0.06

[sec]. Jumping height rises as compared to without arms’

swinging in ta = 0.00, 0.02 [sec], but it comes down in

ta = 0.04, 0.06 [sec]. Also in each case with swinging

arms’, time of getting off the ground is later. Furthermore

if time of starting in swinging motion is faster, jumping

height is higher and time of getting off the ground is later.

Normal force to supporting foot and CoG are depicted

in Figs. 9∼12. Both feet get off the ground from t = 0.13
[sec] to t = 0.15 [sec] and normal force becomes zero at
this time. Also in landing motion, each foot bumps the

ground by heel and tiptoe in that order after t = 0.6
[sec], and a greater impulsive force Fimz/3.0 × 10−3

arises between tiptoe and the ground. Motion energy is

depicted in Figs. 13∼16. Figures 9∼16 shows that nor-

mal force and motion energy last getting off the ground

rise when jumping height rises. This conclusion is con-

sidered that normal force rises and time of getting off the

ground becomes late by interference of arms’ swinging

and thereby impulse and motion energy rises and jump-

ing height rises.

5. CONCLUSION

We discussed arms’ influence to vertical jumping mo-

tions of humanoid whose dynamics have varieties of gaits

including surface-contacting and point-contacting. Simu-

lation results indicate that normal contacting force to the

ground and motion energy at the detaching moment rise

and them jumping height becomes high.

Also, impulsive force in landing is smaller when time

of getting off the ground is lator. It is because landing

posture of the robot are influenced by arms’ swinging.

Thus, we think it is possible that a load of each link in

landing are reduced by giving effectual input torque to

each link of arms.
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Fig. 9 Normal force and CoG zg (ta = 0.00)
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Fig. 10 Normal force and CoG zg (ta = 0.02)
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Fig. 11 Normal force and CoG zg (ta = 0.04)
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Fig. 12 Normal force and CoG zg (ta = 0.06)
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Fig. 13 Motion energy (ta = 0.00)
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Fig. 14 Motion energy (ta = 0.02)
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Fig. 15 Motion energy (ta = 0.04)
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Fig. 16 Motion energy (ta = 0.06)
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