
Eye-Vergenceを用いたビジュアルサーボの周波数応答特性
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1. 緒言

近年，ロボットビジョンの分野では，ビジュアルサー
ボと呼ばれる制御方法が注目されている [1]-[2]．ビジュ
アルサーボとは，視覚センサから得られる視覚情報を
フィードバックループに組み込むことでロボットの動
作を制御する方法であり，常に変化する環境や未知の
環境で働くロボットへの適応が期待されている．

対象物を認識するために，二つのカメラをロボット
アームの先端に固定した固定ハンドアイシステムを用
いている．このようなシステムでは，対象物が速く動
く場合，ハンドの質量と慣性モーメントが大きいため，
追従しにくい欠点がある．本研究ではカメラ自身の姿
勢が可変である Eye-Vergence システムを提案する．

Eye-Vergence システムは運動学と動力学についての
メリットがある．まず，運動学についてのメリットを説
明する．カメラがハンドに固定されている固定ハンド
アイシステムは，いくつかの欠点を持つ．例えば，対
象物がカメラに近いとき対象物を認識できないこと (図
1 (a))，また二つのカメラの可視領域が狭いこと (図 1
(b))，さらに可視領域内の対象物であっても図 1 (c)に
示すようにカメラ画像視野の中心に写像されることが
挙げられる．これは，レンズ周辺部で大きくなるレン
ズのひずみの影響を受けやすいという問題を生む. 以
上より固定ハンドアイシステムは位置／姿勢計測が不
正確になる場合や，不可能になる場合があるという本
質的な問題を持っていることがわかる．ここで上述の
問題を解決するため，本論文では画像の中心で対象物
を捉えるためにカメラ自身の姿勢を変化させる自由度
を与える．カメラの姿勢を変えることが可能になるの
で，図 2の (a)-(c)に示すように，対象物をよりよく観
測することができる．図 2(a)，(b)は両眼可視領域が拡
大すること，(c)はレンズの中心で対象物を観測するこ
とによってレンズ収差により発生する入力画像のひず
みを避けられることを示している．

動力学についてのEye-Vergenceシステムのメリット
はカメラが移動する対象物を注視できることである．ビ
ジュアルサーボの応用では，安定な閉ループシステムで
安定なサーボ動作を保つ必要がある．図 3(a)は，カメ
ラが対象物を捉え続けることができる状態を示す．(b)
に示すロボットのカメラはハンドに固定されており，対
象物が速く動くと，マニピュレータ全体の運動特性に
依存して対象物のスピードに追いつくことができない．
このとき対象物はカメラの視界から消失し，制御系は
暴走という危険な状態に陥る．よって，ビジュアルサー
ボシステムにおいては，動く対象物をカメラ視野内に
とらえつづける能力である可追跡性を高めることが非
常に重要である．また，カメラの質量と慣性モーメン
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図 1固定ハンドアイシステムの欠点
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図 2運動学についての Eye-Vergenceシステムの利点
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図 3動力学についての Eye-Vergenceシステムの利点

トがマニピュレータ全体より小さいので，対象物のス
ピードに追いつくことができる．図 3(c)に示すように，
カメラ視線制御をハンド制御に追加することで，対象
物を追跡する能力が向上する．
本論文では，提案したEye-Vergenceシステムの優位

性を確認するために，正弦波周波数応答実験を行った．
実験の結果から提案したEye-Vergenceシステムが高い
安定性と可追従性を持つことを確認する．

2. ハンドアイビジュアルサーボ

2·1 目標軌道生成

図 4にハンドと対象物の関係を示す．世界座標系を
ΣW，対象物の座標系を ΣM と記述する．さらに，実
際のハンドの座標系とその目標座標系をそれぞれ ΣE，
ΣEdで表すこととする．ハンドの目標状態と対象物との
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図 4ハンドと対象物の関係

相対的な位置／姿勢関係は EdT M によって表し，実際
のハンドと対象物との関係は ET M によって表す．この
とき，ΣEとΣEdとの差は ET Edとして表され，ET Ed

は以下のように記述できる．

ET Ed(t) = ET M (t)EdT−1
M (t) (1)

式 (1) は任意の対象物の運動 W T M (t) =
(W T E(t)E

T M (t)) と任意の時変ビジュアルサー
ボの目標運動 EdT M (t)を含む．ET M (t)は 1-step GA
とオンラインモデルベースド認識法を使って観測され
る．推定された対象物を ΣM̂ で表すと，実際の物体
ΣM と検出された物体 ΣM̂ の間には，誤差が存在する
ことが一般的である．ここで，式 (1)で表されるハン
ドの位置／姿勢誤差 ET Ed(t) を推定した物体 ΣM̂ に
基づいて次のように再構成する．

ET Ed(t) = ET M̂ (t)M̂T Ed(t) (2)

式 (2)を時間に関して 2回微分すると以下の式を得る．

ET̈ Ed(t) = ET̈ M̂ (t)M̂T Ed(t) + 2EṪ M̂ (t)M̂ Ṫ Ed(t)

+ ET M̂ (t)M̂ T̈ Ed(t) (3)

ここで M̂T Ed, M̂ Ṫ Ed, M̂ T̈ Edはビジュアルサーボの目
標軌道としてあらかじめ与えられ，ET M̂ , EṪ M̂ , ET̈ M̂

はカメラによって観測される．図 4に示すように，ビ
ジュアルサーボ過程において 0にすべき二つの誤差が
存在する．一つは実際の物体と検出された物体 MT M̂

の誤差である．もう一つはハンドの目標状態と実際の
ハンド ET Edの誤差である．著者らの研究では，ある
仮定のもとでMT M̂ の誤差は 1-step GAオンライン認
識法，MFF補償法と Eye-Vergenceシステムによって
0に収束することをリアプノフ法により確認し実験で
も確認している [4]．ET Edの誤差はハンドビジュアル
サーボコントロールによって減少することも実験によ
り確認している．

2·2 ビジュアルサーボコントローラ

2·2.1 ハンドビジュアルサーボコントローラ

提案したハンドアイビジュアルサーボのコントロー
ラはハンドとアイ二つのコントローラを組み合わせて
いる．ハンドビジュアルサーボのブロック線図を図 5
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図 5ビジュアルサーボのブロック線図

に示す. 前節で議論したロボット手先の運動軌道を用
いて，手先の目標速度 W ṙd は,

W ṙd = KPp

W rE,Ed + KVp

W ṙE,Ed, (4)

のようにPD制御を行う．ここで，W rE,Ed,
W ṙE,Edは

ΣE から ΣW への座標変換を使って ET Edと EṪ Edか
ら求められる．KPp

はバネ定数，KVp
は粘性抵抗を表

す行列である．
ハンドの手先の目標角速度ベクトル W ωd は

W ωd = KPo

W RE
E∆ε + KVo

W ωE,Ed, (5)

と与えられる．ここで，E∆εはクォータニオンの偏差
[5]であり，ΣEで表された対象物の姿勢誤差であり,“1-
step GA”による認識結果から直接得られる．W ωE,Ed

はΣEからΣW への座標変換を使ってET Edから求めら
れる．KPo はバネ定数，KVo は粘性抵抗を表す行列で
ある．ハンドの目標位置/姿勢はW ψT

d = [W rT
d ,W εT

d ]T

とする．
本研究で使用しているアームロボット PA-10(三菱重

工製)は一つの冗長自由度を持っている．システムの不
安定さを改善するため，第 1リンクの角度 q1を 0とす
ることで，手先の目標位置から各リンクの目標角度を
逆運動学により計算できる．この方法を利用し，冗長
性の問題を解決する．ロボットの目標関節角度 qdと角
速度 q̇d は

qd = f−1(W ψT
d ) (6)

q̇d = kp(qd − q) + J+(q)

[
W ṙd

W ωd

]
(7)

と求められる．ここで，f−1(W ψT
d )は逆運動学を表し，

kp はバネ定数として与えられる.J+(q) は J(q) の擬
似逆行列であり，J+(q) = JT (JJT )−1 によって得ら
れる．
また,ロボットへの入力トルクは次式によって与えれ

らる．

τ = KSP (qd − q) + KSD(q̇d − q̇) (8)

上式のKSP はバネ定数，KSDは粘性抵抗を表す行列
である．
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図 6カメラのパン角とチルト角

2·2.2 Eye-Vergenceビジュアルサーボコントローラ
本論文では Eye-Vergence ビジュアルサーボに対し

て二つのパンチルトカメラを用いる．カメラは手先に
取り付けており，二自由度を持っている．q8 は左右カ
メラ共通のチルト角を表し，q9と q10はパン角を表す．
図 6に示すように, ExM̂，

EyM̂ および
EzM̂ はハンド

座標において認識された物体の位置を表す．また，カ
メラの目標角度は以下によって計算される．

q8d = atan2(EyM̂ , EzM̂ ) (9)

q9d = atan2(l8R − ExM̂ ,E zM̂ ) (10)

q10d = atan2(l8L + ExM̂ ,E zM̂ ) (11)

Eye-Vergenceビジュアルサーボコントローラは

q̇8 = KP (q8d − q8) + KD(q̇8d − q̇8) (12)

q̇9 = KP (q9d − q9) + KD(q̇9d − q̇9) (13)

q̇10 = KP (q10d − q10) + KD(q̇10d − q̇10) (14)

と与えられる．ここで，KP はバネ定数，KDは粘性抵
抗を表す．

3. ハンドアイビジュアルサーボ実験
本稿では，実機によって Eye-Vergenceシステムの優

位性を確認する．

3·1 実験環境

提案したビジュアルサーボシステムの有効性を実機に
よって確認するために，アームロボット PA-10(三菱重
工製)を使用する．PA-10の手先には SONY製のステ
レオカメラ CCD-TRV86(撮影素子：1/6インチ CCD，
焦点距離：f＝ 3.6[mm]，視野角：α＝ 38[deg])を二台
取り付け，複眼で対象物を観測する．対象物は赤，緑，
青のボールを組み合わせた 3Dマーカであり，ボール
の直径は 40[mm]，ボールの中心とマーカの中心点の距
離は 100[mm]である．実験の対象物とマニピュレータ
の座標を図 7に示す．白い矢印は対象物の移動方向を
示す．
ビジュアルサーボシステムの性能を確認するために，

まず，対象物の真の位置/姿勢 (x, y, z, ε1, ε2, ε3)6変
数をサーボコントローラに入力し，周波数応答実験を
行う．次に，カメラによる認識を含めた３つの周波数応
答実験を行う．一つ目は x軸方向だけ未知として対象
物の位置を認識する．二つ目は x，y，z軸方向を未知
とする．三つ目は位置/姿勢の 6変数をすべて未知とす
る．各実験に対して，対象物の角速度をω=0.314rad/s，
0.628rad/s，1.256rad/sと設定する．
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図 7実機実験の環境

3·2 実験条件

対象物の初期位置を ΣM0 として定義する．ΣW から
ΣM0 への同次変換行列は以下のように与えられる．

W T M0 =




0 0 −1 −1235[mm]
1 0 0 −150[mm]
0 −1 0 555[mm]
0 0 0 1




(15)

対象物は ΣM0 の x軸に沿って運動し，次式で与える．

M0xM (t) = 150− 150 cos(ωt)[mm] (16)

対象物の目標位置/姿勢と手先の関係は時不変とし，

EdψM = [0,−90[mm], 545[mm], 0, 0, 0] (17)

と与えられる．

3·3 実験結果

ハンドアイ二重ビジュアルサーボの実機実験の結果
を図 8-図 11に示す．ω=0.314，0.628，1.256，それぞ
れの角速度における時間応答波形を図 8-図 11の (a)，
(b)，(c)に示す．また，振幅周波数曲線と位相周波数
曲線を (d)と (e)に示し，横軸は ω の対数目盛りとし
ている．“End effector”と指示している曲線は固定カ
メラ／手先 Trackabilityを表し，Right camera，Left
cameraと指示している曲線は Eye-Vergenceシステム
の Trackabilityを表す．
図 8-図 11の (a)-(c)より，Eye-Vergenceシステムは

固定カメラシステムに比べて，振幅の差，位相の遅れ
共に小さいことがわかる．
図 8-図 11の (d)，(e)より，ω= 0.1rad/s までは，ハ

ンドとカメラの可追跡性はほぼ等しいが，ωが増するに
したがってハンドの共振の振幅と位相は，カメラより
も大きくなることがわかる．また，ωが 0.5rad/s より
増加していく場合，固定カメラシステムの振幅は減少
していく．一方，Eye-Vergenceシステムにおいては，ω

が 1.256rad/s までの範囲ではカメラの視界に物体を常
に捉えつづけることができる．よって，Eye-Vergence
システムは固定カメラシステムよりも優れた安定性を
有し，良い追跡性を有することが分かる．

4. 結言
本報告では，提案したビジュアルサーボシステムの

有効性を確認するために，移動対象物のビジュアルサー

RSJ2012AC4I2-4

日本ロボット学会第30回記念学術講演会（2012年9月17日〜20日）



-200-150-100-50050100150200 0 5 10 15 20 25 30 35 40
Time [s]

p
os

it
io

n
[m

m
] 
  ,

Left cameraRight camera

End effectorTarget -200-150-100-50050100150200 0 5 10 15 20 25 30 35 40
Time [s]

p
os

it
io

n
[m

m
] 
  ,

Left cameraRight camera

End effectorTarget

-200-150-100-50050100150200 0 5 10 15 20 25 30 35 40
Time [s]

position[mm]   ,
Left cameraRight camera

End effectorTarget

-14

-12

-10

-8

-6

-4

-2

0

0.01 0.1 1 10
angle velocity (rad)

2
0

lo
g(

B
/A

) 
(d

B
) 

   
, Left camera

Right camera

End effector

(a) ! = 0:314 (b) ! = 0:628

(c) ! = 1:256

(d) GainÄDiagram (e) PhazeÄDiagram

Left cameraRight camera

End effector

-120

-100

-80

-60

-40

-20

0

0.01 0.1 1 10
angle velocity (rad/s)

d
el

a
y 

a
n

gl
e(

°)
   

 ,

7.19

図 8対象物の位置/姿勢を与えた場合
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図 9ｘ軸方向だけを未知として実験した場合

ボ実機実験を行った．実機実験の結果から固定カメラ
システムとEye-Vergenceシステムのカメラの周波数特
性を比較し，Eye-Vergenceシステムの可追跡性が固定
カメラシステムよりも優れているという結論を得た．
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図 10ｘ，ｙ，ｚ軸方向を未知として実験した場合
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図 11位置/姿勢の 6変数を認識する場合
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