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1. 緒　言
安定な制御器の設計という観点でヒューマノイドロ
ボットの取り扱いを考えると，厳密なヒューマノイド
ロボットのダイナミクスは強い非線形性や様々な干渉
を持つため，リミットサイクルに収束するような安定
な歩行を実現する制御器の設計は困難であり，複雑な
モデルの作成は敬遠されることが多い．そのため，線
形近似や倒立振子モデルに置き換えたヒューマノイド
ロボットのモデルを作成し，ZMPなどを利用して安定
な二足歩行を実現している．
人間の歩行において，私達は踵やつま先による点接
地と足全体による面接地を切り替えながら歩いている．
しかしながら，単純化されたモデルは足を点として扱っ
ているため面接地の状態を表現することは困難である．
さらに，従来のダイナミクスは現実世界に存在する足
の滑りを議論していないものがほとんどである．
そのため，本研究の目的は [1]と同様に厳密な歩容の
ダイナミクスを導出することである．しかし，[1] と異
なるのは，Lagrangeの方程式ではなく Newton-Euler
法 [3, 4]を利用している点である．また，[2]で提案さ
れているダイナミクスを用いて，足の滑りを表現でき
るようにした．さらに，運動の次元を変化させること
により，面接地と点接地を区別した．

2. 二足歩行ダイナミクス
2·1 Newton-Euler法による運動方程式の導出
本報では矢状面におけるヒューマノイドロボットの
運動について議論する．図 1にヒューマノイドロボット
を構成するリンク・関節・関節角度の定義を示す．この
モデルは一般的なマニピュレータに基づいており，支
持脚から胴体・遊脚の方向に分岐する構造である．

Newton-Euler法を用いて運動方程式を導出する手順
として，まずは基準のリンクから先端のリンクに向かっ
て正順計算を行い，各リンク間の位置・速度・加速度
を求める必要がある．分岐後の Link-4と Link-7の重
心の加速度 s̈i (i = 4, 7)は以下の式で与えられる．

s̈i = p̈3 + ω̇i × iŝi + ωi × (ωi × iŝi) (1)

ここで，iŝi は i番目のリンクの重心位置，Ri は回転
行列，p̈3 は Link-3の原点における加速度，ωi, ω̇i は
リンクの角速度・角加速度を表している．ただし，左上
に添え字がない変数は基準座標ΣW で表現されている．

次に，先端のリンクから基準のリンクに向かって逆

順計算を行うことで，i番目のリンクにおけるNewton
の運動方程式 (式 (2)) と Eulerの運動方程式 (式 (3))
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図 1 リンク・関節・関節角度の定義

が求まる．図 1に示されるモデルを構成する関節は全
て zi 軸回りの回転運動を行うため，i番目のリンクの

運動方程式は式 (4)となる．

if i = iRi+1
i+1f i+1 + mi

is̈i (2)
ini = iRi+1

i+1f i+1 + Ii
i!̇i + i!i × (Ii

i!i)

+ iŝi × (mi
is̈i) + ip̂i+1 × (iRi+1

i+1f i+1) (3)

τi = (ezi)
T ini (4)

miは i番目のリンクの質量，Iiは慣性テンソル，ip̂i+1

は i番目と i+1番目のリンクの原点の距離を示す．Link-
3に関しては Link-4, 7から力とトルクが伝達されるた
め，運動方程式は以下の過程で導出できる．

3f3 = 3R4
4f4 + 3R7

7f7 + m3
3s̈3 (5)

3n3 = 3R4
4n4 + 3R7

7n7 + I3
3!̇3 + 3!3 × (I3

3!3)

+ 3ŝ3 × (m3
3s̈3) + 3p̂4 × (3R4

4f4)

+ 3p̂7 × (3R7
3f7) (6)

τ3 = (ez3)
T 3n3 (7)

式 (4)と式 (7)を用いることで全リンクの運動方程
式が表現されるため，ヒューマノイドロボットが片足

で立っている状態は以下の式で与えられる．

M(q)q̈ + h(q, q̇) + g(q) + Dq̇ = τ (8)

ここで，qは関節角度，Mは慣性行列，hは遠心力・コリ

オリ力ベクトル，gは重力項，D = diag[d0, d1, · · · , d7]
は粘性抵抗行列，τ は入力トルクベクトルを示している．
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図 2 歩容の状態遷移図

2·2 歩容の表現

歩行のモデルは，支持脚と遊脚の状態に応じて形や

次元が変化する．しかし，以下に示すダイナミクスを

用いることによって全ての歩容の表現が可能である．
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式 (9)は 2つの拘束条件式と各リンクの運動方程式で構
成され，遊脚に関する拘束条件は式 (10)で表現される．

C(r(q)) =

[
C1(r1(q))
C2(r2(q))

]
= 0 (10)

C1 は基準座標における踵・つま先の z 方向の並進運

動に対する拘束 (z = 0)を表し，r1(q)は拘束する点
の座標である．C2は地面に対する Link-6の角度 qe(=
q0 + q1 + · · · + q6)の拘束 (qe = 0)を表現している．
一方で，運動方程式は式 (11)となる．

M(q)q̈ + h(q, q̇) + g(q) + Dq̇

= τ + (jT
c − jT

t K)fn + jT
r τn, (11)
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と定義した．また抗力 fnとすべり摩擦力 ftは直交し，

ft = Kfn (K は比例定数)で求まると仮定した．
式 (9)の第 1行の関係を ‘A’，第 1，2行の関係を ‘B’，

第 1，2，3行の関係を ‘C’という記述式として定義す
る．そして，支持脚と遊脚の全ての接地パターンと変

数，拘束条件の関係性を表 1にまとめる．ただし本報
では図 2に示されるように，遊脚のみ滑りが生じるも
のとし，支持脚の滑りは考慮していない．また，両足

が同時に地面から離れることはない．

表 1 歩容・変数・拘束運動の関係

支持脚 遊脚 変数 拘束条件 状態 記述式

(静止)

面 面 qa ∈ Rn C1 = 0, C2 = 0 (3) C

面 点 qa ∈ Rn C1 = 0 (2), (4) B

面 なし qa ∈ Rn なし (1) A

点 面 qa ∈ Rn+1 C1 = 0, C2 = 0 (3′) C

点 点 qa ∈ Rn+1 C1 = 0 (2′) B

点 なし qa ∈ Rn+1 なし (1′) A

(滑り)

面 面 qb ∈ Rn+1 C1 = 0, C2 = 0 C

面 点 qb ∈ Rn+1 C1 = 0 B

面 なし qb ∈ Rn+1 なし A

点 面 qb ∈ Rn+2 C1 = 0, C2 = 0 C

点 点 qb ∈ Rn+2 C1 = 0 B

点 なし qb ∈ Rn+2 なし A

状態 (1′) のように，支持脚の足が点接地である場
合，式 (9)に含まれる変数 q は qa = [q0, q1, · · · , q8]T

である．しかしながら，状態 (1) のように支持脚の
足が滑りのない状態で面接地をしている場合，その

足は完全に運動を行わない．すなわち，Link-0 の回
転を表現する変数 q0 は式 (9) から排除できる．つ
まり，状態 (1), (2), (3), (4) における変数は qa =
[q1, q2, · · · , q8]T ∈ Rn，状態 (1′), (2′), (3′) における
変数は qa = [q0, q1, · · · , q8]T ∈ Rn+1 となり，歩容に

応じてダイナミクスの次元が変化する．支持脚が基準

座標の y軸方向に滑るときは，支持脚の位置を表す変

数 y0が加わり，qb = [y0, q1, q2, · · · , q8]T ∈ Rn+1 また

は，qb = [y0, q0, q1, · · · , q8]T ∈ Rn+2 となる．

3. 歩容の状態遷移

図 2は歩容の状態遷移の条件も示している．分岐の
ある箇所では，先に遷移条件が満たされた方に遷移す

る．ここで，歩容の切り替わりは完全に式 (9)の解に依
存しているという点が重要である．すなわち，歩容の

変化は初期状態，入力トルク，地面の形状などに大き

く影響され，歩容を予測することは不可能である．次

RSJ2011AC1J1-3

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



Wf1z
Wf1z
2 Wn1x

L

Wn1x

ÜW

z
y

Wf1z
2

Link-0

2L

Link-1

x

(Front)(Rear)

Wn1x
L

FF

図 3 Link-0に作用する力とトルク

節以降では，特記すべき遷移について述べる．

3·1 (1)から (1′)，(2)から (2′)への遷移

本節では面接地状態の支持脚の踵が地面から離れ，

点接地となる遷移を考える．この判定には Link-1の支
点に作用する力 1f1及びトルク

1n1を用いる．1f1と
1n1 は式 (2), (3)から導出できる．ここで，基準座標
ΣW で考えた場合の力とトルクの z軸成分と x軸成分

を W f1z，W n1xとおき，単位ベクトル ez = [0, 0, 1]T，
ex = [1, 0, 0]T を用いると以下の式が成立する．

W f1z = (ez)T Wf1,
W n1x = (ex)T Wn1 (13)

式 (13)で導出された力とトルクは Link-0に対して図 3
のように作用している．踵とつま先に作用する力の合

力をそれぞれ FR，FF とおくと以下の式を得る．

FR =
Wf1z

2
−

Wn1x

L
, FF =

Wf1z

2
+

Wn1x

L
(14)

従って，FR < 0のときに踵が地面から離れる．

3·2 地面と脚が衝突する場合

(1)から (2)，(1′)から (2′)，(2)から (3)，(2′)から
(3′)の遷移においては，脚と地面との衝突を考慮する
必要がある．そこで，[1]に記述されている手法を用い
て衝突時のダイナミクスを導出する．拘束条件を含む

運動方程式を積分することにより，衝突時の関係式が

得られる．

M(q)q̇+ = M(q)q̇− + jT
c Ic (15)

M(q)q̇+ = M(q)q̇− + jT
r Ir (16)

式 (15)は踵と地面の基準座標ΣW における z方向の衝

突を表現している．同様に式 (16)は，x軸周りの回転

によって生じるつま先と地面の衝突を表している．q̇+，

q̇− はそれぞれ衝突後，衝突前の角速度である．また

Ic，Ir は力積であり，Ic = limt−→t+
∫ t+

t−
fndt，Ir =

limt−→t+
∫ t+

t−
τndt として表現される. 衝突後，以下の

式を満たすようにロボットの運動が生じる．

∂C1

∂q
q̇+ = 0,

∂C2

∂q
q̇+ = 0 (17)

表 2 各リンクの物理パラメータ
Link Number 0 1 2 3 4

mi [kg] 1.0 1.0 1.0 1.5 1.0

li [m] 0.5 2.0 2.0 1.5 2.0

ri [m] (1.0, 0.5) 0.2 0.2 0.2 0.2

Link Number 5 6 7 8

mi [kg] 1.0 1.0 3.0 1.0

li [m] 2.0 0.5 2.0 0.5

ri [m] 0.2 (0.5, 1.0) 0.2 0.5

上記の式をまとめると，衝突前後の関係を表現するダ

イナミクスは以下に示す行列として表される．

[
M(q) −jT

c

jc 0

][
q̇+

Ic

]
=

[
M(q)q̇−

0

]
(18)

[
M(q) −jT

r

jr 0

][
q̇+

Ir

]
=

[
M(q)q̇−

0

]
(19)

3·3 (3)から (4)，(3′)から (4)への遷移

すべり摩擦力 ftによって，y軸方向 (進行方向)の足
の速度が ε(ε = 0.01[m/s]) 以下となったとき，足の滑
りが止まったと見なし，状態 (4)に遷移する.

4. 歩行シミュレーション

各リンクは表 2に示される物理パラメータ (質量mi

[kg]，長さ li [m]，半径 ri [m])を持つ．一方で各関節
には粘性抵抗 di [N·m·s/rad]が存在し，全ての関節に
おいて di = 50.0 とした．動作環境として，シミュ
レーションプログラムのコンパイルには “Borland C++
Builder Professional Ver. 5.0”，3次元モデルの描画に
は “OpenGL”を利用した．また，シミュレーションに
おけるサンプリング時間は 5.0 × 10−3 [sec]である．

4·1 Feed-forward制御に基づいた入力トルク

一般的に，安定な歩行を実現するためにはFeed-back
制御が頻繁に用いられる．しかしながら，本報では式

(20)及び図 4に示されるトルクを用いた Feed-forward
制御を行っている．これは，参照軌道の導出は困難で

ありロボットの特異点を回避しなければならなかった

ためである．

τ = JT
KfK + JT

HfH (20)

式 (20)において，JK は支持脚から遊脚の膝までの

ヤコビ行列，fK = [fKx, fKy, fKz]T は後足を前に踏み
出すために使用される力である．一方で，JH は支持

脚から頭部までのヤコビ行列，fH = [fHx, fHy, fHz]T

は頭部と重心の位置が下がることを防止する力である．
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図 5 シミュレーション結果のスクリーンショット
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図 6 歩容の変化

4·2 二足歩行の一例

摩擦力が ft = 0.5fn，fK と fH が式 (21)で与えら
れる環境において，歩行シミュレーションを行った．

fK =

2

6
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4.0 cos
n

2.0π(t−T )
2.9

o

40.0 cos
n

2.0π(t−T )
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o

3

7

7

5

, fH =

2

4

0
0.49
4.8

3

5 (21)

ここで，‘t’は現在時刻，‘T ’は状態 (4)の開始時刻から
次の状態 (4)の開始時刻までの時間を示している．す
なわち，支持脚が右脚から左脚，または左脚から右脚

に変わるまでの時間である．

図 5–8に示されるように 6歩程度の歩行が実現され
が，滑りの影響でロボットの体勢が崩れたため連続的

な歩行は不可能であった．この時の滑りを発生する力

と摩擦力の差 [N]と足の進行方向の速度 [m/s]を図 9に
示す．急激に滑りを止めるための力が弱まり，足の速

度が 0に収束していないことが確認された．その要因
の 1つが徐々に歩幅が小さくなったことである．

5. 結　言

本報では足の滑りを含む二足歩行の歩容を 7つに分
割し，Newton-Euler法を用いて各歩容を表現するダイ
ナミクスの導出を行った．ダイナミクスを構成する変
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図 7 踵の接地点と歩幅
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数の数は支持脚の接地状態に応じて変化し，歩容に応

じてダイナミクスが適切に切り替わる．

数値シミュレーションの結果，ヒューマノイドロボッ

トは数歩の歩行に成功したが，滑りによって体勢が崩

れ，安定かつ連続的な歩行は実現できなかった．その

ため，足の滑りを防止するような制御器の作成が安定

な歩行を達成するための一手法として考えられる．
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