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Abstract: Based on the analysis of the interaction between a manipulator’s hand and a working object, a model repre-
senting the constrained dynamics of the robot is first discussed. In this paper, we design a new compensation of the system
based on the constrained system and prove its convergence in a new way with Lyapunov method, in this way we focus on
the motion of the manipulator because the output force is a function of the input torque directly which is not affected by

time.
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1. INTRODUCTION

Many researches have discussed on the constraint-
combined force/position hybrid control method, to ensure
the stabilities of the constrained motion, those force and
position control methods have utilized Lyapunov’s sta-
bility analysis under the inverse dynamic compensation
[6]-[8]. But most of these proofs are trying to verify their
methods in two different parts [2], [3]: lim; .., F = Fy
and lim;_,., 7 = r4 here F and F'; are the actual out-
put force and the desired output force, while = and r4 are
the actual shape of the manipulator and the desired shape
of the manipulator respectively. But in fact because the
output force of the end effector can be calculated by the
parameters of the manipulator and the input torques di-
rectly, this relationship is not affected by time, we can
make f = f, any time, so we do not think it is a good
idea to ensure the convergence of the system through the
time function of the force, which can only guarantee that
the force can get to the desired one at last, especially in
the case that we have to control the force all the time, such
as the grinding robot. In this paper we will introduce our
compensation algorithm and prove its convergence in a
new way by Lyapunov method.

Those former classical robot controlling approaches
can be classified into two broad categories[8]: impedance
control and hybrid (force/position) control. In impedance
control, a prescribed dynamic relation is sought to be
maintained between the robot end-effector’s force exert-
ing to a object constraining the end-effector and position
displacement toward the direction vertical to the object’s
surface [12]. In hybrid control, the end-effector’s force
is explicitly controlled in selected directions and the end-
effector’s position is controlled in the remaining (comple-
mentary) directions [1].

The hybrid control approaches can be further classi-
fied into three main categories: 1) explicit (model based)
hybrid control of rigid robots in elastic contact with a
compliant environment, e.g., [13]-[14], in which the end-
effector force is controlled by directly commanding the
joint torques of the robot based on the sensed force er-
ror; 2) implicit (position/velocity based) hybrid control of
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rigid robots in elastic contact with a compliant environ-
ment, e.g., [15], in which the end-effector force is con-
trolled indirectly by modifying the reference trajectory
given into an inner loop joint position/velocity controller
based on the sensed force error; and 3) explicit (model
based) hybrid control of rigid robots in hard contact with
arigid environment, e.g., [1],[3].

According to these classified categories, our
force/position control approach named as Constraint-
Combined Control, which will be introduced in detailed
later should be classified into category 3). In all the
former force/position controlling methods of hybrid
control of category 1) and 2), the contact surface’s
compliant characteristics must be properly taken into
account since it will affect force control procedure. As a
result, when contact constraint force is analyzed, process
the end-effector contacting with constraint surface is
being expressed as a motion equation with spring model,
which is a differential function with time-varying.

Eq.(1), which has been pointed out by Hemami [16]
in the analysis of biped walking robot, denotes also al-
gebraic relation between the input torque 7 of the robot
and exerting force to the working object F;,, when robot’s
end-effecter being in touch with a surface in 3-D space:

(1)

where, x; and xo are state variables. a(xi,x2) and
A(xy) are scalar function and vector one defined in fol-
lowing section.

In this paper, position and force control performances
of our new controller [17] are confirmed by grinding ex-
periments, especially on the view point that the force con-
trol space and the position control space are divided into
orthogonal spaces being complement each other, that is,
force space is defined by range space of A and the other
is null space of A, (I — AT A).

F, =a(xy, ) — A(zy)T,

2. ANALYSIS OF GRINDING TASK

There are four kinds of grinding processes in common
use, called respectively vertical surface grinding, hori-
zontal surface grinding, internal grinding and cylindrical
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Fig. 1 Types of Grinding Tasks

grinding. A grinding machine usually can only perform
one or two of these processes because of kinematic lim-
itation. However, all of the four kinds of tasks can be
finished by a single robot manipulator for its dexterity in
movement. To do so, the grinding wheel has to contact
with the workpiece. A set of contacting surfaces, espe-
cially the surfaces being machined, will form constraints
to the motions of the grinding wheel. As for vertical sur-
face grinding operation shown in Fig. 1 (a) , the grinding
wheel in contact with a surface of the work-piece is not
free to move through that surface, which forms a posi-
tion constraint. And also, the wheel cannot freely apply
arbitrary force tangent to the surface in case of no dis-
turbing force like friction existing, which forms a set of
force constraint. Situations of constraints for other kinds
of grinding tasks are shown in Fig. 1 (b), (c) and (d).

Generally speaking, the grinding power is related to
the metal removal rate(weight of metal being removed
within unit time), which is determined by the depth of cut,
the width of cut, the linear velocity of the grinding wheel,
the feed rate and so on. There are many empirical formu-
lae available for the determination of grinding power, and
the desired force trajectory can then be planned accord-
ing to the power. The normal grinding force F), is exerted
in the perpendicular direction of the surface. It is a sig-
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Fig. 2 A Grinding Robot

nificant factor that affects ground accuracy and surface
roughness of workpiece. The value of it is also related to
the grinding power or directly to the tangential grinding
force as

F, =K F,, 2)
where, K is an empirical coefficient, F} is the tangential
grinding force. The axial grinding force F,, is propor-
tional with the feed rate, and is much smaller than the
former force.

Eq. (2) is based on the situation that position of the
grinding cutter is controlled like currently used machin-
ing center. But when a robot is used for the grinding task,
the exerting force to the object and the position of the
grinding cutter should be controlled simultaneously. The
F), is generally determined by the constrained situation,
and it is not suitable to apply Eq. (2) to grinding motion
by the robots.

For grinding task, the normal force and tangential ve-
locity are the most important two factors. To improve
grinding quality, it is usually desired that the normal force
is constant while the velocity is also constant in the mid-
dle term of a grinding stroke.

3. MODELLING

3.1 Constrained Dynamic Systems

Hemami and Wyman have addressed the issue of con-
trol of a moving robot according to constraint condition
and examined the problem of the control of the biped lo-
comotion constrained in the frontal plane. Their purpose
was to control the position coordinates of the biped loco-
motion rather than generalized forces of constrained dy-
namic equation involved the item of generalized forces of
constraints. And the constrained force is used as a deter-
mining condition to change the dynamic model from con-
strained motion to free motion of the legs. In this paper,
the grinding manipulator which is shown in Fig. 2 whose
end-point is in contact with the constrained surface, is
modeled according Eq. (7) with Lagrangian equations of
motion in term of the constraint forces, referring to what



Hemami and Arimoto have done:
d OL OL
738~ (5g)
or

oC oC .

= 7+ ((‘Tq)/ I g | Fn — (671)7“/ | r | F
or_, 0C oC 7

= T+ (%)((87)/ [ 94 | Fn — mFt(B)

r is the [ position vector of the hand and can be ex-
pressed as a kinematic equation ,

“4)

L is the Lagrangian function, g is [(> 2) general-
ized coordinates, 7 is [ generalized torque inputs. The
discussing robot system does not have kinematic redun-
dancy. C is a scalar function of the constraint, and is
expressed as an equation of constraints

C(r(q) =0,

r=r(q).

®)

F,, is the constrained force associated with C' and F; is
the tangential disturbance force.

It is easy to see that here F),, F}; express the value of
the pressure and the friction respectively, while (g—g) /|

||7'H express the direction of the pressure and

the friction, because the friction is always vertical to the
pressure, we can get

Bq || and

=0 (6)
(( )/ || II) ” .
we define J. and J,. as
oC ~ aC
—*/H*II fr/llg\\,
5 _Or _p T
JW" - %7Jr _Jrr/ H r Ha
(3) can be rewritten into
d OL oL T T
Bl et W Gl F —

Eq. (7) can be derived to be
Mg+ H(q,q) + G =T1+J(Q)F. — T (@)F1, (8)

where M is an [ x [ matrix, H and G are [ vectors. Be-
cause

(%’})a _ —[a%g%’;)q]q =
_ —qT[%(%ﬁ)]q ©)

And equation (8) can be rewritten as follows:

M gt q T-H-G-JI'F,
ac 0 R —qT (22 (224 (10)
oqr n a9 loq\aqT )4

here we define

- M —Jt
M = l Ye, 0 (11
aqT
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in equation (10)if and only if M is full rank matrix we
can control the manipulator to the desired pose. Here we
express M in a simple form:

- M —ZAT} M —Jt
M = — c (12)
[ A 0 l aqr 0

here l =1/ || gc |[> 0, because M is positive definite,
there exist a orthogonal matrix V' which can makes

A 0

VMVT=| @ . | (MM >0)(13)

0 An
SO
det(M) = det(M )det(AMIAT)
= [-det(M ")det(AVIVMVTV A%)

define

AVT =Jay,... a,) (15)
SO

det(M) =1 - det(M) i()\iaf) >0 (16)

i=1

which means that M is reversible.
The state variable x is constructed by adjoining g and

g x = (xF,z])T=(q", ¢")T. The state-space equation
of the system are
T, T2,
o ~M " (H(z1,22) + G(z1))
+M N1+ T (21)F, — T 1) F)(1T)
or in the compact form
&z =F(x,7,F,, F), (18)

Using the inverted form of combination from Eq. (5) and
Eq.(18) (this part had been detailedly introduced in [19]

by us), F;, can be expressed as
Fn:Fn(CE,T7Ft), (19)

or in a more detailed form

oc. . __,,0C ¢ ocC
Fa =[G )M (G 50
[aﬁq<%>fﬂq+(%>M‘l(H<q,q)+G(q>+JTTFt>}
aC. . 0C 1.,
(54 (({Tq)} || H {( ) “hr
= a(xy, z9) + A(xy)JLF, — A(zy)T, (20)

where, a(x1, x) is a scalar representing the first term in
the expression of F,,, and A(x) is an [ vector to repre-
sent the coefficient vector of 7 in the same expression.
Eq. (18) and Eq. (19) compose a constrained system
that can be controlled, if F,, = 0, describing the uncon-
strained motion of the system.



Substituting Eq. (20) into Eq. (17), the state equation
of the system including the constrained force (as F;, > 0
) can be rewritten as

:'Bl = I,

= —M 'H(z1,®:) + G(z1) — J¢ (@1)a(z1, 25))]

+M NI -J AT+ (JTA - DI R, @)

Solutions of these dynamic equation always satisfy the
constrained condition (5).

4. FORCE AND POSITION
CONTROLLER WITH LYAPUNOV
STABILITY

4.1 Preparation for the proof
From Lagrange equation we can get the dynamics
equation of the manipulator

M (q)g + M(q)q — 5071((1

here M (q) is the inertial moment matrix, g express the
angle of the joints, g(q) is the gravity term. The energy
of a manipulator system is:

M(q)q) + G(q) = T (22)

E = K+U (23)
1
= §QTM(q)c'1 +Ulq) (24)

here, E is the whole energy of the system, K is kinetic
energy and U is the gravity potential energy, so

1

: . ol 1, L oU .
E = -§g"M(q)g+ iqTM(q)q - §qTM(Q)q o

2
.7 L OU
= ¢ M@)q+54 M) +4q oqT
o R T

= q (M(Q)q+2M(q)q+8qT)

from (22) and (26) we can get

§" (M()i+ M)+ Gla) @)
/1l . 1 o0 ,, .
~ 4" (5M(@)q - §&J—T(qTM(q)q))(28)
= " (M@ 5o @ M @) )ae9)
set
S(a.4) = 3 (M(0) - 5or (" M(@d)) GO

s0 (29) can be simplified to

d" (M(a)i + ;N (@) + Gla) = 4" S(a.4)a GV

It is easy to see that S(q, q) is a skew-symmetrical ma-
trix, and the manipulator dynamics equation (22) can be
written as

M(q)i + 3 M(a)d + (g @) + Gla) = - (32)
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4.2 Force and position controller with Lyapunov Sta-
bility
We make the input torque as:
T =—AT(21){Fpq — a(zy,z0) — A(x1)JLF,}

—(I — A+ (l‘l)A({El))k (33)
here we define N = T— A" A, and where I is a lx ! iden-
tity matrix, F,4 is the desired constrained forces, A(x1)
is defined in Eq. (20) and A (z;) is the pseudoinverse

matrix of it, a(x1, x2) is also defined in Eq. (20) and k is
an arbitrary vector which is defined as

k=JIF, — JIF, — clky(re — 72d) + karz] (34)

because VI IN £ 0, there always exist a vector ¢ make
VT Ne # 0, here c is a arbitrary vector which satisfies
VTNe # 0. The position of the end-effector can be
expressed as r = [ry, 1y, 7] SO,
q=Vi, (35)
here, V' is a3 x 1 vector, differentiate both side of (35)
by time
§= Vi, + Vi, (36)

here we do not consider the gravity and friction so the
dynamics equation of the system can be simplified to:

M(q)g+Hq=71+J F,—J (@F, (37
take (35) and (36) into (37) we can get
M (q)Viy, + M(q)Vi, + HVT,
= 7+ JI'E, - J(q)F, (38)

) premultipuly V7 IV on both side we can get

VINM(q)Vi, + VIN(M(q)Vi,
+VINHV,
= VINT+VINJTF, - VINJIT (q)B9)

Take (33) into (39) we can get

VINM(q)Vi, + VINM(q)Vi,+ VINHV,

= VINk+VINJI'F, - VINJI  (q)F,
= VINe(—kgty — kp(rs — 124))

= *kdfz — kp(Tx — rmd)

H can be divided into £ M (q) + S here S is an antisym-
metric matrix, so (40) can be written as:

VINM(q)Vi, + VINM(q)V7,

(40)
(41)
(42)

1 .
+VTN(§M(q) + 8)V iy + kaiy + k(12 — 70a)

=0
multiple 7, on the both side of (43) we can get:
VINM/(q)Vi,i, + VI N(M(q)Vi

(43)

+VIN(ZM(q) + S)Vi2 + kai? + kp(re — rd)iz

1
2
-0

(44)



Constraint condition is known

il ol il l
/ |
: Ia($1,$2)||A(ﬂ31I)|
Il Cr(g)) =0 b te 1
+ | — P — e —— ﬁ — —
AT (z)yl | Mozt EGo G | [
: _ 2
) I—A+(a:1)A(m1)!—-P+, = SERACIZRHCL BRD B Ay PR
. C(r(q)) =0
...................... i [T (r@)
r oL,
Dynamic system
Controller Y Y
Fig. 3 Shape-grinding position / force control system
set Lyapunov argument as: REFERENCES

t
Vo = %VTNM(q)VﬁiJr / %VTAJrAM(q)Vfidt

0

1
+—

21{;,,(@ —72q)2 >0

SO
V = VINM(q)Vii,+VIN(M(q)Vi?2
1 .
+VTN§M(q)w§ + k(72 — T2a)TA6)
from (44), (46) can be transformed to
14 ~VTSVi2Z — kgi?
—kai} <0

(47)

because S is a skew symmetrical matrix. From (46) we
can see only when 7, = 0, V= 0, in this case we assume
that r,, # r.q so from (33) we can know that T # O this
conflict to 77, = 0 so we can say that if and only if r,, =
Tzd, Tz = 0 and V= 0, and then get the conclusion:

(48)

lim r, = 734
t—o0
because the constraint system satisfies that C(r(q)) = 0,

(49)

lim 7 = lim 7r4.
t—o0 t—o00

Because (20) is a function does not affected by time,
when we substitute (34) into (20), we can get

here (50) does not conclude the variable of time which
means that, the output force always equals the desired
one.

5. CONCLUSIONS

In this paper we designed a constraint-combined
force/position controller for the continuous shape-
grinding system, and prove the convergence of the con-
troller in a new way by Lyapunov method, the output
force of the system can always equel to the desired once.
At last we did some simulations to verify the convergence
of the controller.
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