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Abstract—This paper is concerned with a new concept of
avoidance manipulability inspired from manipulability. The ma-
nipulability represents the ability to generate velocity at the tip
of each link without any designated hand task. The avoidance
manipulability represents the shape-changeability (avoidance
ability) of each intermediate link when a prior hand task is given.
The intermediate links represents all comprising links of robot
except top link with end-effector. The avoidance matrices,1M i

(i = 1, · · · , n − 1) corresponding to all i-th intermediate links,
are used for analyzing avoidance manipulability, resulting in
that rank(1M i) declares the shape-changeable space expansion
and singular values of 1M i indicates the avoidance ability
of i-th link. In this research, what assumption can guarantee
mathematically the configurations with maximum rank(1M i)
is our main concern for maximizing shape-changeability to
prepare effectively dynamic change of environment or sudden
appearance of obstacles. Then we proved that our “Non-singular
Configuration Assumption” can guarantee the maximum rank of
1M i through detailed decomposition analyses of1M i.

I. INTRODUCTION

Kinematically redundant manipulators have more DoF than
necessary for accomplishing a given hand task. Nowadays,
redundant manipulators are used for various kinds of tasks
such as welding, sealing, grinding and contact tasks. Many
kinematic researches are usually used to solve the problem
of motion and obstacle avoidance of redundant manipulators
discussing how to use the redundancy. Up to now, a variety
of indices have been proposed for evaluation of the perfor-
mance of robot manipulators. The manipulability ellipsoid
[1] was presented to evaluate the static performance of a
robot manipulator as an index evaluating the manipulator’s
shape on the view point of how much the hand velocity
can be generated by normalized joint velocity. Further, [2]
formulated the relation of the redundancy and the priority
order of multiple tasks. [3] proposed a control method of
the redundancy based on priority order of tasks, and pointed
out the effectiveness by actual experiments. A method that
uses perturbation of a dumping element for avoiding obstacles
along with singular configuration, and a regulation method of
dumping element were discussed in [4]. The manipulability

measure was addressed for cooperative arms [5] and for
dexterous hands [6] and was used in real-time control [7]. In
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Fig. 1. Manipulability ellipsoids and Avoidance manipulability ellipsoids

addition, the manipulating force ellipsoid [8] was presented
to evaluate the static torque-force transmission from the joints
to the end-effector, while the dynamic manipulability ellipsoid
[9] was presented as an index of the dynamic performance of
a robot manipulator. Recent years, combining the dynamic
manipulability ellipsoid with the manipulability force ellip-
soid, the inertia matching ellipsoid [10] was proposed to
characterize the dynamic torque-force transmission efficiency.

The researches mentioned above were an argument in a
condition that an assumption guarantees the possibility that
multiple avoiding motions could be realized. They did not
consider how much residue redundant freedoms are remained
at the links required to avoid obstacle. However, in an on-line
system with dynamic environment, when a moving obstacle
appears suddenly near the manipulator, it requires the ma-
nipulator to possess the ability to avoid this moving obstacle
by changing its shape, which is so-called “Avoidance Ma-
nipulability”. In this background, as shown in Fig.1, we had
presented the avoidance manipulability ellipsoid concept as an
index evaluating shape-changeability of the manipulator [11],
which is inspired from the manipulability concept [1]. In fact,
the avoidance matrix (1M i), which is important to analyze
avoidance manipulability, had initially been defined and used
for controling the redundant manipulator’s configuration based
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on prioritized multiple tasks [12]. However, the proposed
controller can not decouple the interacting motions of multiple
tasks even though the redundant degree be much higher than
the required motion degree of the multiple tasks, stemming
from incompleted definition of Jacobian matrix concerning
the motion of what number of links the matrix describes.
Contrasting [12] with our definition of Jacobian matrix, the
detailed difference and explanation are shown in sections III.
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(a) Non-singular configuration (b) Singular configurations

Fig. 2. Non-singular configuration and Singular configurations
Avoidance manipulability of the manipulator is evaluated

in the residue redundant surplus space depending on the
avoidance ability in each possible dimension of intermediate
links, where intermediate link means all links except tip
link with hand. In other words, maximum avoidance space
expasion (rank(1M i)) and maximum avoidance ability in
possible avoidance dimension (singular values of1M i) will
determine the avoidance manipulability. In this paper, what
assumption guarantees mathematically the configurations with
rank(1M i) as shown in Fig.2(a) is our main problem, that
is, aiming at avoiding the singular configurations as shown
in Fig.2(b). We discuss this assumption named as “Non-
singular Configuration Assumption”, which can assure the
rank of 1M i to be maximized, through analysis and proof by
decomposing1M i into singular components. Maximization
of rank(1M i) of intermediate links is the essential require-
ment for configuration optimization of manipulator with high
avoidance manipulability. And it is the first step of design for
an on-line control system of a redundant manipulator with
high shape-changeability through avoidance manipulability.

II. REDUNDANT MANIPULATOR’S KINEMATICS

A. Analysis in Position Space

Representing the position vector ofi-th link by rp,i ∈ Rmp

(i = 1, 2, · · · , n). mp denotes the position dimension number
of working space (1≤mp≤3), n denotes the number of the
manipulator’s links andmp < n because of redundancy.rp,i

is given as a function ofqi and defined as

rp,i = rp,i(qi) = [r1,i(qi), · · · , rmp,i(qi)]
T (1)

In (1), qi with n elements is defined as

qi = [q1, · · · , qi, 0, · · · , 0]T , (i = 1, 2, · · · , n) (2)

In addition, according to Fig.3,rp,i(qi) can be denoted as

rp,i(qi) =
i∑

j=1

∆rp,j(qj) (3)

Årp;1(q1)

Årp;2(q2)

Årp;3(q3)

Årp;i(qi)
Årp;n(qn)

Årp;i+1(qi+1)

rp;i = rp;i(qi)

rp;n = rp;n(qn)

Ü0

Fig. 3. Structure 1 of n-link redundant manipulator

By differentiatingrp,i(qi) in (3) with time, we can obtain

ṙp,i(qi) =
∂rp,i(qi)

∂qT
n

q̇n

=
∂∆rp,1(q1)

∂qT
1

q̇n + · · ·+ ∂∆rp,i(qi)
∂qT

i

q̇n

= Jp,iq̇n (4)

Then, we can obtain the position Jacobian matrixJp,i (i =
1, 2, · · · , n) in (4) as follows:

Jp,i = [
i∑

j=1

∂∆rp,j(qj)
∂q1

, · · · ,
∂∆rp,i(qi)

∂qi

︸ ︷︷ ︸
i

, 0︸︷︷︸
n−i

] }mp

= [j̃p,i,1, · · ·, j̃p,i,i, 0] = [J̃p,i, 0] (5)

If we redefine∆Jp,j as

∆Jp,j = [
∂∆rp,j(qj)

∂q1
, · · · ,

∂∆rp,j(qj)
∂qj︸ ︷︷ ︸

j

, 0︸︷︷︸
n−j

] }mp

= [∆j̃p,j,1, · · ·, ∆j̃p,j,j , 0] = [∆J̃p,j , 0] (6)

Jp,i (i = 1, 2, · · · , n) can be denoted as

Jp,i =
i∑

j=1

∆Jp,j (7)

In this way,Jp,n can be denoted as

Jp,n =
n∑

j=1

∆Jp,j = Jp,i +
n∑

j=i+1

∆Jp,j (8)

In addition, referring to Fig.4, we know

0pi+1,k =
i∑

j=k

∆rp,j(qj) =
i∑

j=k

0Rj
jp̂j+1 (9)

In (9), 0Rj is rotation matrix denoting the relation between
Σ0 and Σj , jp̂j+1 is the constant denoting position vector
from the origin ofΣj to the one ofΣj+1 with respect toΣj .
Then, we can obtain

∆rp,j(qj) = 0Rj
j p̂j+1 (10)

Then, by differentiating∆rp,j(qj) with time, we can obtain

d∆rp,j(qj)
dt

=
∂∆rp,j(qj)

∂q1
q̇1 + · · ·+ ∂∆rp,j(qj)

∂qj
q̇j (11)
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Fig. 4. Structure 2 of n-link redundant manipulator

Given thei-th joint be rotational,

∂∆rp,j(qj)
∂qi

= 0zi×(0Rj
jp̂j+1) (12)

since,

d(0Rj
jp̂j+1)

dt
=

d0Rj

dt
j p̂j+1 = (

j∑

i=1

0ziq̇i)×0Rj
jp̂j+1

= 0z1×(0Rj
j p̂j+1)q̇1 + · · ·

+ 0zj×(0Rj
j p̂j+1)q̇j (13)

where, 0zi denotes the unit vector of axis direction ofi-th
joint defined as

0zi = 0Riez (14)

and in (14), ez = [0, 0, 1]T providing z-axes of all link
coordinates represent rotational axes. Substituting (12) into
(6), we can obtain

∆Jp,j = [0z1×(0Rj
j p̂j+1), · · · , 0zj×(0Rj

jp̂j+1)︸ ︷︷ ︸
j

,

0︸︷︷︸
n−j

] }mp (15)

Then,according to (7) and (9), we can obtain

Jp,i = [0z1×0pi+1,1, · · · , 0zi×0pi+1,i︸ ︷︷ ︸
i

, 0︸︷︷︸
n−i

] }mp (16)

If the k-th joint is prismatic, the translational direction is
represented by0zk (1≤k≤i), thenJp,i is denoted as

Jp,i = [0z1×0pi+1,1, · · ·︸ ︷︷ ︸
k−1

, 0zk︸︷︷︸
1

, · · · , 0zi×0pi+1,i︸ ︷︷ ︸
i−k

, 0︸︷︷︸
n−i

] }mp (17)

B. Analysis in Orientation Space

Representing the orientation vector of each link byro,i ∈
Rmo . Here,mo denotes the orientation dimension number of
working space (1≤mo≤3). If ro,i is represented by a rather
common definition of “Euler angles” (φi, θi, ψi), and it is
given as a function ofqi and defined as

ro,i = ro,i(qi) = [φi(qi), θi(qi), ψi(qi)]
T (18)

By differentiatingro,i in (18) with time, we can obtain

ṙo,i(qi) =
∂ro,i(qi)

∂qT
n

q̇n = J̄o,iq̇n (19)

In addition, the relation between angular velocity vectorωi

and ṙo,i(qi) is

ωi =




0 −sinφi cosφisinθi

0 cosφi sinφisinθi

1 0 cosθi


 ṙo,i(qi)

=




0 −sinφi cosφisinθi

0 cosφi sinφisinθi

1 0 cosθi







∂φi(qi)

∂q1
· · · ∂φi(qi)

∂qi
0

∂θi(qi)

∂q1
· · · ∂θi(qi)

∂qi
0

∂ψi(qi)

∂q1
· · · ∂ψi(qi)

∂qi
0


 q̇n

= Jo,iq̇n (20)

In (20), providingz-axes of all links represent rotational axes,
Jo,i is denoted as

Jo,i = [0z1, · · · , 0zi︸ ︷︷ ︸
i

, 0︸︷︷︸
n−i

] }mo (21)

If the k-th joint is prismatic (1≤k≤i), Jo,i is denoted as

Jo,i = [0z1, · · · , 0zk−1︸ ︷︷ ︸
k−1

, 0︸︷︷︸
1

, 0zk+1, · · · , 0zi︸ ︷︷ ︸
i−k

, 0︸︷︷︸
n−i

] }mo (22)

Being similar with (7), Jo,i can be denoted as

Jo,i =
i∑

j=1

∆Jo,j (23)

C. Analysis in Both Position and Orientation Spaces

According to above analyses of Jacobian matrices in po-
sition space (1≤mp≤3) and orientation space (1≤mo≤3)
respectively. Firstly, when mp = 3, rp,i(qi) =
[x(qi), y(qi), z(qi)]T . Then, from (5) we can define a general
positon Jacobian matrix (3×n) as

J
mp=3
p,i =




∂x(qi)

∂q1
· · · ∂x(qi)

∂qi
0

∂y(qi)

∂q1
· · · ∂y(qi)

∂qi
0

∂z(qi)

∂q1
· · · ∂z(qi)

∂qi
0


 (24)

Next, whenm0 = 3 and ro,i(qi) is defined as (18) in
orientation space. Then, we can define a general orientation
Jacobian matrixJmo=3

o,i (3×n), which is justJo,i analysed
from (20) to (23) in orientation space.

Finally, if a general Jacobian matrix (6×n) in the max-
imum space ofm = mp + mo = 6 such asri(qi) =
[x(qi), y(qi), z(qi), φi(qi), θi(qi), ψi(qi)]T is defined as

Jm=6
i =

[
J

mp=3
p,i

Jmo=3
o,i

]
(25)
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In this way, according toJm=6
i , we can define any Jacobian

matrix in any kind of space as

J i = UmJm=6
i

= [j̃i,1, · · ·, j̃i,i︸ ︷︷ ︸
i

, 0︸︷︷︸
n−i

] }m = [J̃ i, 0] (26)

In (26) providing i = n, Um is a m×6 matrix and is used
to select objective space used selectively for hand task. For
example, when the objective space is given by 3-dimensional
such asri(qi) = [x(qi), y(qi), φi(qi)]T , Um is 3×6 matrix
as

Um =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0


 (27)

In addition, being similar with (7) and (23), we can define

J i =
i∑

j=1

∆J j (28)

and

∆J j =
[

∆Jp,j

∆Jo,j

]
(29)

III. AVOIDANCE MANIPULABILITY

Here we assume that the desired trajectory (rnd) and the
desired velocity of the manipulator’s hand (ṙnd) are given as
primary task. Then, according to (30),

ṙnd = Jnq̇n (30)

we can obtain

q̇n = J+
n ṙnd + (In − J+

n Jn) 1l (31)

In (31), Jn is Jacobian matrix differentiatedrn by qn

(ṙn = Jnq̇n), J+
n is pseudo-inverse ofJn, In is n×n unit

matrix, and1l is an arbitrary vector satisfying1l ∈ Rn. The
left superscript “1” of1l means the first avoidance sub-task
executed by using redundant DoF. The following definitions
about the left superscript “1” are also. By substituting (31)
into 1ṙdi = J iq̇n, the relation of1ṙdi and ṙnd is denoted as

1ṙdi = J iJ
+
n ṙnd + J i(In − J+

n Jn) 1l (32)

Then, we define two variables shown as

∆1ṙdi
4
=1ṙdi − J iJ

+
n ṙnd (33)

and

1M i
4
=J i(In − J+

n Jn) (34)

In (33), ∆1ṙdi is called by “the first avoidance velocity”. In
(34), 1M i is a m×n matrix called by “the first avoidance
matrix”. Then,∆1ṙdi can be rewritten as

∆1ṙdi = 1M i
1l (35)

The relation between1ṙdi and∆1ṙdi is shown in Fig.5. From
(35), we can obtain1l shown as

ObstacleObstacleObstacleObstacle

J iJ
+
n _rnd

_rnd

1 _rid

ÄJ iJ
+
n _rnd

Å1 _rid

_q2

_qi

_q1

Üw

Fig. 5. Obstacle avoidance of intermediate links

1l = 1M i
+
∆1ṙdi + (In −1 M+

i
1M i)2l (36)

In (36), 1M+
i is pseudo-inverse of1M i and2l is an arbitrary

vector satisfying2l ∈ Rn. From (36), we can obtain

‖1l‖2 ≥ ∆1ṙdi
T
(1M+

i )T 1M+
i ∆1ṙdi (37)

Assuming that1l is restricted as‖1l‖ ≤ 1, then the extent
where∆1ṙdi can move is denoted as

∆1ṙdi
T
(1M+

i )T 1M+
i ∆1ṙdi ≤ 1 (38)

When rank(1M i) = m, (38) represents that the first
avoidance velocity∆1ṙdi can be described by an ellipsoid
expanded inm-dimensional space, which indicates∆1ṙdi can
be freely realized inm-dimensional task space. The ellipsoid
represented by (38) is named as the first complete avoidance
manipulability ellipsoid. However, whenrank(1M i) = p <
m, the extent of the new first avoidance velocity∆1ṙ∗di is
denoted as

∆1ṙ∗di
T
(1M+

i )T 1M+
i ∆1ṙ∗di ≤ 1 (39)

This new first avoidance velocity∆1ṙ∗di = 1M i
1M+

i ∆1ṙdi

can be described by an ellipsoid expanded inp-dimensional
space. The ellipsoid represented by (39) is named as the first
partial avoidance manipulability ellipsoid. Becausep < m, the
first partial avoidance manipulability ellipsoid can be thought
as a segment of the first complete avoidance manipulability
ellipsoid as first and third links shown in Fig.2(a). Thus
rank(1M i) determines the possible avoidance dimension of
i-th link, therefore the condition to giverank(1M i) maxi-
mum number is essential for configuration control and avoid-
ance control to maximize the shape-changeability degree.
Next we will propose an assumption and prove it guarantees
the rank of1M i.

IV. ANALYSIS OF rank(1M i)

A. Non-singular Configuration Assumption

“Non-singular Configuration Assumption” is

rank(J i
ν→ν+m−1) = min{i,m} (1≤ν≤i−m + 1) (40)

In (40), J i
ν→ν+m−1 indicates the matrices including them

column vectors sequentially chosen from the firsti columns
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of J i without the lastn − i zero columns. That is them
column vectors sequentially chosen from̃J i as

rank(J̃ i
ν→ν+m−1

) = min{i,m} (1≤ν≤i−m + 1) (41)

In (41), for example, wheni = n andν = n−m + 1,

J̃n
n−m+1→n

= [j̃n,n−m+1, · · · , j̃n,n] (42)

Ü0

non-singular

non-singular

non-singular

non-singular

non-singular

Fig. 6. Conceptual description of Non-singular configuration“Non-singular Configuration Assumption” is a kind of
mathematical denotation, which corresponds to the non-
singular configuration described as Fig.6 in robot field.

B. Results

By (41), we will prove that we can obtain “Results” of
rank(1M i) (i = 1, 2, · · · , n− 1) as follows:

1) Results in Both Position and Orientation Spaces({m =
mp + mo}∩{2≤mp≤3}): Whenn≥2m,

rank(1M i) =





i (1≤i < m)
m (m≤i≤n−m)

n− i∼m (n−m < i≤n− 2)
1∼m− 1 (i = n− 1)

(43)

Whenn < 2m,

rank(1M i) =





i (1≤i < n−m)
n−m (n−m≤i≤m)

n− i∼n−m (m < i≤n− 1)
(44)

2) Results in Position Space({m = mp}∩{2≤mp≤3}):
Whenn≥2m,

rank(1M i) =





i (1≤i < m)
m (m≤i≤n−m)

n− i∼m (n−m < i≤n− 2)
1∼m− 1 (i = n− 1)

(45)

Whenn < 2m,

rank(1M i) =





i (1≤i < n−m)
n−m (n−m≤i≤m)

n− i∼n−m (m < i≤n− 1)
(46)

3) Other Results({m = mp = 1}∪{m = mo}∪{m =
mo + 1}): Whenn≥2m,

rank(1M i) =





i (1≤i < m)
m (m≤i≤n−m)

n− i∼m (n−m < i≤n− 1)
(47)

Whenn < 2m,

rank(1M i) =





i (1≤i < n−m)
n−m (n−m≤i≤m)

n− i∼n−m (m < i≤n− 1)
(48)

The proofs of these results are shown in subsection IV-D.

C. Mathematical Discriptions

1) Mathematical Definitions:Jn can be decomposed as

Jn = UΣV T (49)

andJ+
n , the pseudo-inverse ofJn, can be decomposed as

J+
n = V Σ+UT (50)

In (49) and (50),U is m×m orthogonal matrix satisfying
UUT = UT U = Im, V is n×n orthogonal matrix satisfying
V V T = V T V = In, Σ is m×n matrix, which includes a
diagonal matrix composing of non-zero singular values ofJn

and the rest parts are all zero elements. Here, we will discuss
the condition thatrank(Jn) = m. So, Σ and Σ+ can be
denoted as

Σ =




m n−m

σ1 0

m
. . . 0

0 σm


 (51)

and

Σ+ =




m

σ−1
1 0

m
. . .

0 σ−1
m

n−m 0


 (52)

In (51) and (52),σ1≥ · · · ≥σm > 0.
Generally,V can be defined with column vectorŝvi (i =

1, 2, · · · , n) as

V = [v̂1 v̂2 · · · v̂n] (53)

In (53), column vectorŝvj (j = 1, · · · ,m) are obtained as

JT
nJnv̂j = v̂jσ

2
j (54)

andV can be redefined with row vectoršvi (i = 1, 2, · · · , n)
as

V = [v̌1, v̌2, · · · , v̌n]T (55)

In addition, whenrank(Jn) = m, we know thatJn can
be also decomposed as

Jn = UmΣmV T
m (56)
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andJ+
n canbe decomposed as

J+
n = V mΣ+

mUT
m (57)

In (56) and (57),Um is m×m matrix satisfyingUmUT
m =

UT
mUm = Im, Um and U are same.V T

m is m×n matrix
satisfyingV T

mV m = Im, and V m is defined using firstm
column vectorŝvj (j = 1, 2, · · · ,m) in (53) as

V m = [v̂1 · · · v̂m] (58)

V m is redefined referring to row vectoršvi (i = 1, 2, · · · , n)
in (55) as

V m = [v̌1,m, · · · , v̌n,m]T (59)

V n−m is the rest block part ofV exceptV m. So, V n−m

can be denoted using column vectorsv̂j (j = m + 1, · · · , n)
in (53) as

V n−m = [v̂m+1 · · · v̂n] (60)

V n−m can be redenoted referring to row vectorsv̌i (i =
1, 2, · · · , n) in (55) as

V n−m = [v̌1,(n−m), · · · , v̌n,(n−m)]T (61)

Σm is m×m matrix, which is a diagonal matrix includingm
non-zero singular values ofJn. Σ+

m is alsom×m diagonal
matrix. So,Σm andΣ+

m are denoted as

Σm =




m

σ1 0

m
. . .

0 σm


 (62)

and

Σ+
m =




m

σ−1
1 0

m
. . .

0 σ−1
m


 (63)

And we divide V m into two block matrices (V(n−m),m

and V m,m) and divide V n−m into two block matrices
(V (n−m),(n−m) andV m,(n−m)), so thatV can be redenoted
as

V = [V m V n−m]

=
( m n−m

n−m V (n−m),m V (n−m),(n−m)

m V m,m V m,(n−m)

)

=
( m n−m

n−m A C
m B D

)
(64)

2) Decomposition ofLn: Firstly, we define

Ln = In − J+
n Jn (65)

Then, from (34),

1M i = J iLn (66)

If rank(Jn) = m. Then, according to (49) and (50) and
referring to (64),Ln can be decomposed as

Ln = In − V Σ+UT UΣV T

= In − V

( m n−m

m Im 0
n−m 0 0

)
V T

= V V T − V

( m n−m

m Im 0
n−m 0 0

)
V T

= V

( m n−m

m 0 0
n−m 0 In−m

)
V T

=
( m n−m

n V m V n−m

) ( m n−m

m 0 0
n−m 0 In−m

)
V T

=
( m n−m

n 0 V n−m

) ( n

m V T
m

n−m V T
n−m

)

=
( n−m

n V n−m

) ( n

n−m V T
n−m

)
(67)

In (67), becauserank(V n−m) = rank(V T
n−m) = n − m,

we can obtain

rank(Ln) = n−m (68)

D. Proofs of Results

We start these proofs by general relation ofrank(1M i)
shown in (75) through decomposing1M i. Here, firstly we
divide V n−m as

V n−m =
( n−m

i V i,(n−m)

n− i V (n−i),(n−m)

)
(69)

In (69), V i,(n−m) is

V i,(n−m) =




n−m

v̌1,(n−m)

i
...

v̌i,(n−m)


 (70)

andV (n−i),(n−m) is

V (n−i),(n−m) =




n−m

v̌(i+1),(n−m)

n− i
...

v̌n,(n−m)


 (71)
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Then, according to (26), (67) and (69),1M i can be
decomposed as

1M i = J iLn

=
( i n− i

m J̃ i 0
) ( n−m

n V n−m

) ( n

n−m V T
n−m

)

=
( i

m J̃ i

) ( n−m

i V i,(n−m)

) ( n

n−m V T
n−m

)
(72)

Then, we can obtain

rank(1M i) = rank(J̃ i V i,(n−m) V T
n−m)

≥ rank(J̃ i) + rank(V i,(n−m) V T
n−m)− i

≥ rank(J̃ i) + rank(V i,(n−m))

+rank(V T
n−m)− i− (n−m)

= rank(J̃ i) + rank(V i,(n−m)) + (n−m)
−i− (n−m)

= rank(J̃ i) + rank(V i,(n−m))− i (73)

and

rank(1M i) = rank(J̃ i V i,(n−m) V T
n−m)

≤ min{rank(J̃ i), rank(V i,(n−m)),

rank(V T
n−m)}

= min{rank(J̃ i), rank(V i,(n−m)),
n−m} (74)

According to (41) and (95) in “APPENDIX??” (the proof
of (95) is shown in “APPENDICES A-??”), (73) and (74) can
be denoted as

min{i,m}+ min{i, n−m} − i≤rank(1M i)≤
min{i, m, n−m} (75)

(1): When{n≥2m}∩{1≤i < m} or {n < 2m}∩{1≤i <
n−m}, by inputting these conditions into (75), we can obtain

rank(1M i) = i (76)

(2): When {n≥2m}∩{m≤i≤n − m}, by inputting these
conditions into (75), we can obtain

rank(1M i) = m (77)

(3): When{n < 2m}∩{n−m≤i≤m}, by inputting these
conditions into (75), we can obtain

rank(1M i) = n−m (78)

(4): When{n < 2m}∩{m < i≤n− 1}, by inputting these
conditions into (75), we can obtain

n− i≤rank(1M i)≤n−m (79)

(5): When {m = mp∪m = mp +
mo}∩{2≤mp≤3}∩{n≥2m}∩{n − m < i≤n − 2} or
{m = mp = 1∪m = mo∪m = mo+1}∩{n≥2m}∩{n−m <

i≤n − 1}, by inputting these conditions into (75), we can
obtain

n− i≤rank(1M i)≤m (80)

(6): When {m = mp∪m = mp +
mo}∩{2≤mp≤3}∩{n≥2m}∩{i = n− 1}, we can obtain

1Mn−1 = J̃n−1 V (n−1),(n−m) V T
n−m (81)

By inputting (41) and (95) into (73), we can obtain

1≤rank(1Mn−1) (82)

In addition,1Mn−1 can be rewritten as

1Mn−1 = Jn−1 Ln

= (Jn −∆Jn)Ln = −∆Jn Ln (83)

In (83), becausem 6=mo, ∆Jn can be denoted as

∆Jn = ∆Jp,n (84)

or according to (29),∆Jn is denoted as

∆Jn =
[

∆Jp,n

∆Jo,n

]
(85)

In (84) and (85),∆Jp,n is described as

∆Jp,n = [0z1×(0Rn
np̂E), · · · , 0zn×(0Rn

np̂E)︸ ︷︷ ︸
n

] }mp (86)

From (86), we know that all column vectors are the vertical
vectors to 0Rn

np̂E in mp-dimensional space. Therefore,
these all column vectors in∆Jp,n can be thought that they
are in (mp − 1)-dimensional space. Then, we can obtain
rank(∆Jp,n)≤mp− 1. And becauserank(∆Jo,n)≤mo, we
can obtainrank(∆Jn)≤mp−1+mo = m−1. And because
rank(Ln) = n−m≥m− 1 from (68), so, we can obtain

1≤rank(1Mn−1)≤m− 1 (87)

In this way, the results from (43) to (48) are proved in above
six rough conditions as shown (76), (77), (78), (79), (80) and
(87).

V. CONCLUSION

This work was supported by Grant-in-Aid for Scientific
Research (C) 19560254. In this paper, based on the concept
of avoidance manipulability, we present “Non-singular Con-
figuration Assumption” for maximization of shape-changeable
space expansion (rank(1M i)) of intermediate links, which is
the most essential requirement for configuration optimization
of manipulator with high avoidance manipulability. In the
future, “Non-singular Configuration Assumption” will be used
for an on-line control system of a redundant manipulator as
the basic guarantee of high avoidance manipulability, where
the system should be stopped once manipulator’s singular
configuration is detected.
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APPENDIX A
PROOF OFrank(V m,m) = m

According to (41), we can obtainrank(Jn) = m, so,
referring to (56),Jn can be decomposed as

Jn = UmΣmV T
m = RmV T

m (88)

In (88), becauserank(Um) = m and rank(Σm) = m, so
rank(Rm) = rank(UmΣm) = m. Then, according to (88),
we can obtain

V T
m = R−1

m Jn (89)

(89) can be rewritten as

[V T
(n−m),m, V T

m,m] = R−1
m Jn (90)

According to (90), we can obtain

V T
m,m = R−1

m J̃
n−m+1→n

n (91)

In (91), because rank(R−1
m ) = m and (41)

(rank(J̃
n−m+1→n

n ) = m), we can obtain

rank(V T
m,m) = rank(V m,m) = m (92)

APPENDIX B
rank(V i,(n−m))

When 1≤i < n − m, V i,(n−m) is one part of
V (n−m),(n−m) as

V (n−m),(n−m) =
( n−m

i V i,(n−m)

n−m− i V (n−m−i),(n−m)

)
(93)

Whenn −m≤i≤n, V (n−m),(n−m) is one part ofV i,(n−m)

as

V i,(n−m) =
( n−m

n−m V (n−m),(n−m)

i− n + m V (i−n+m),(n−m)

)
(94)

So, from (??),

rank(V i,(n−m)) = min{i, n−m} (95)
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