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Abstract—This paper is concerned with a new concept of measure was addressed for cooperative arms [5] and for

avoidance manipulability inspired from manipulability. The ma-  dexterous hands [6] and was used in real-time control [7]. In
nipulability represents the ability to generate velocity at the tip

of each link without any designated hand task. The avoidance Y
manipulability represents the shape-changeability (avoidance (
ability) of each intermediate link when a prior hand task is given.
The intermediate links represents all comprising links of robot
except top link with end-effector. The avoidance matrices! M Q =
(: =1,---,n — 1) corresponding to all i-th intermediate links, -
are used for analyzing avoidance manipulability, resulting in T
that rank(* M) declares the shape-changeable space expansion
and singular values of 'M; indicates the avoidance ability Zu X B X
of i-th link. In this research, what assumption can guarantee
mathematically the configurations with maximum rank(* M)
is our main concern for maximizing shape-changeability to
prepare effectively dynamic change of environment or sudden
appearance of obstacles. Then we proved that our “Non-singular . . . . .
Configuration Assumption” can guarantee the maximum rank of ~ addition, the manipulating force ellipsoid [8] was presented
! M ; through detailed decomposition analyses of M. to evaluate the static torque-force transmission from the joints
to the end-effector, while the dynamic manipulability ellipsoid
l. INTRODUCTION [9] was presented as an index of the dynamic performance of
Kinematically redundant manipulators have more DoF thaa robot manipulator. Recent years, combining the dynamic
necessary for accomplishing a given hand task. Nowadaysanipulability ellipsoid with the manipulability force ellip-
redundant manipulators are used for various kinds of taskeid, the inertia matching ellipsoid [10] was proposed to
such as welding, sealing, grinding and contact tasks. Marmharacterize the dynamic torque-force transmission efficiency.
kinematic researches are usually used to solve the problemThe researches mentioned above were an argument in a
of motion and obstacle avoidance of redundant manipulatoecendition that an assumption guarantees the possibility that
discussing how to use the redundancy. Up to now, a varietgultiple avoiding motions could be realized. They did not
of indices have been proposed for evaluation of the perfoconsider how much residue redundant freedoms are remained
mance of robot manipulators. The manipulability ellipsoidat the links required to avoid obstacle. However, in an on-line
[1] was presented to evaluate the static performance ofsgstem with dynamic environment, when a moving obstacle
robot manipulator as an index evaluating the manipulatoragppears suddenly near the manipulator, it requires the ma-
shape on the view point of how much the hand velocityipulator to possess the ability to avoid this moving obstacle
can be generated by normalized joint velocity. Further, [2Dy changing its shape, which is so-called “Avoidance Ma-
formulated the relation of the redundancy and the prioritpipulability”. In this background, as shown in Fig.1, we had
order of multiple tasks. [3] proposed a control method opresented the avoidance manipulability ellipsoid concept as an
the redundancy based on priority order of tasks, and pointéablex evaluating shape-changeability of the manipulator [11],
out the effectiveness by actual experiments. A method thathich is inspired from the manipulability concept [1]. In fact,
uses perturbation of a dumping element for avoiding obstaclése avoidance matrix'(\;), which is important to analyze
along with singular configuration, and a regulation method advoidance manipulability, had initially been defined and used
dumping element were discussed in [4]. The manipulabilitjor controling the redundant manipulator’s configuration based

Y . .
desired hand trajectory

(a) Manipulability ellipsoids (b) Avoidance manipulability ellipsoids

Fig. 1. Manipulability ellipsoids and Avoidance manipulability ellipsoids
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on prioritized multiple tasks [12]. However, the proposed - Arpi+1(di1)

controller can not decouple the interacting motions of multiple ,a”’——’—A—":P,i(qi) )
tasks even though the redundant degree be much higher than C

the required motion degree of the multiple tasks, stemming
from incompleted definition of Jacobian matrix concerning
the motion of what number of links the matrix describes.
Contrasting [12] with our definition of Jacobian matrix, the — A7p1(q1)

detailed difference and explanation are shown in sections lll. Sy

A"411,3 (q3)
Arpa(qy)

Fig. 3. Structure 1 of n-link redundant manipulator
v ¥ Y By differentiatingr,, ;(g;) in (3) with time, we can obtain
. orp.i(a;) .
b)) = THeANa,
_ aATp,1(Q1)q iy 5A7‘p,i(qz')q
dqt " oqF "
Ty X X5, X = J. . 4
(a) Non-singular configuration (b) Singular configurations p,lqn ( )
Fig. 2. Non-singular configuration and Singular configurations Then,we can obtain the position Jacobian matdy; (i =
Avoidance manipulability of the manipulator Is evaluated, 2, ...  n) in (4) as follows:
in the residue redundant surplus space depending on the i
avoidance ability in each possible dimension of intermediatey =~ _ ZaA’“p,j(Qj) OATy,i(q;) 0 ]}m
links, where intermediate link means all links except tip " = a7 o =~
- n—1

link with hand. In other words, maximum avoidance space

expasion (rank'M;)) and maximum avoidance ability in - . -

possible avoidance dimension (singular values b1 ;) will = Upitr 5 Ipiir 0= [Jpi, O] (5)
determine the avoidance manipulability. In this paper, wha} e redefineAJ
assumption guarantees mathematically the configurations with

rank(*M;) as shown in Fig.2(a) is our main problem, that o [aATPaj(qj) - 0Ary(qy) 0 | }m
is, aiming at avoiding the singular configurations as shown™ ~#7/ oq1 ’ ’ 0q; P
in Fig.2(b). We discuss this assumption named as “Non- ) "
singular Configuration Assumption”, which can assure the ~ ~ ~

rank of L M ; to be maximized, through analysis and proof by = [Adp s - Dl 0 =[AJy;, 0] (6)
decomposing' M; into singular components. Maximization J,i (i=1,2,---,n) can be denoted as

of rank( M) of intermediate links is the essential require-

pj 8S

ment for configuration optimization of manipulator with high 7o zi:AJ _ )
avoidance manipulability. And it is the first step of design for P — P
an on-line control system of a redundant manipulator with =
high shape-changeability through avoidance manipulability. In this way, J,, , can be denoted as

II. REDUNDANT MANIPULATOR’S KINEMATICS S S

o - Jom = Y AT i=Jdpi+ Y AJ,; (8

A. Analysis in Position Space j=1 j=it1

Representing the position vector®th link by r, ; € R™» In addition, referring to Fig.4, we know
(¢=1,2,---,n). m, denotes the position dimension number ; ;
of working space {<m,<3), n denotes the number of the 0, _ Ar. (q.) — ORIp. 9
manipulator’s links andn,, < n because of redundancy, ; Pt Jgk . (4;) ]Zk 7P ®)

is given as a function ofy, and defined as
In (9), °R; is rotation matrix denoting the relation between

T . . . .
Tpi = Tpi(@;) = [r1,i(q;), s 7m,.i(q;)] (1) % and%;, /p,,, is the constant denoting position vector
from the origin ofX; to the one of;,; with respect tox;.
Then, we can obtain

Arp,j(qj) = ORjjﬁj+1 (10)

Then, by differentiatingAr,, ;(q;) with time, we can obtain

In (1), g; with n elements is defined as

qzz[qlav(JHOv?O]T? (221,2,,71) (2)

In addition, according to Fig.3;,;(g;) can be denoted as

(11)

rpi(q;) = Z Ary, (q;) 3 dATp,j (qj) - 0ATy.,i(a)) G4+ 0ATy.;(g;) i
j=1 dt oq Jq;
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Fig. 4. Structure 2 of n-link redundant manipulator

Given thei-th joint be rotational,

9AT, ;(q;) =
S 02X Ry By 1) (12)
qi
since,
d°R;p; 1) dR; .. T »
TJ — dtj ]pj+1 _ (i:10ziq1,)><0Rj ]ij
0

zlx(URjjﬁjH)(h + ..

+ Ozjx(oRjjﬁjﬂ)QJ (13)

where, %z, denotes the unit vector of axis direction 6th
joint defined as

Ozi = ORiez (14)
and in (14),e. = [0,0,1]T providing z-axes of all link

coordinates represent rotational axes. Substituting (12) into

(6), we can obtain

Adp,; Lzix(OR7p;y1), -, 2z x ORI P, 1),
J
\Of,] tmy (15)
n—j
Then,according to (7) and (9), we can obtain
Ipi = [Ozl Xopi+1,1a s vozixopiﬂ,iv\q_j tmy,  (16)

. n—it
%

If the k-th joint is prismatic, the translational direction is
represented bz, (1<k<3), then Jp,i is denoted as

J ,:[Oz XO . ...Oz
Pp,i 1 p+1,17 ) ks
_Z,_/v

k—1 1 i—k n-t

B. Analysis in Orientation Space
Representing the orientation vector of each linkiy; €

R™°, Here,m, denotes the orientation dimension number OF

working space (<m,<3). If r,; is represented by a rather
common definition of “Euler angles” (¢9;,;), and it is
given as a function of;; and defined as

Toi = To.(a;) = [0:(a;), 0:(a;), vi(a;)]” (18)

By differentiatingr, ; in (18) with time, we can obtain

or,.i(q;) . - .

In addition, the relation between angular velocity veatgr
and+,;(q;) is

T0,i(q;) (19)

0 —sing; cosgp;sinb;
w; = 0 cosp; sing;sind; | 7,.(q;)
|1 0 cosb; ]
[0 —sing; cosp;sind; |
= 0 cosp;  sing;sinb;
|1 0 cosb; ]
[ 8¢:(q,) 0¢:(q,) 0
0 1 0, k3
99.(q,) ACH) :
a1 9q; 0 qn
L Oa 9q;

In (20), providingz-axes of all links represent rotational axes,
J,,; is denoted as

22, 0 ]}m, (21)

~—

n—t

Joi=["21, -
If the k-th joint is prismatic (1<ki), J,; is denoted as

Jo,’i = [Ozlv"' uozkfh 0 uozk+17"' uozi7, 0 J }mo (22)
1

k—1 i—k n—i

Being similar with (7), J,,; can be denoted as

Jo,i = ZAJO,j (23)
j=1

C. Analysis in Both Position and Orientation Spaces

According to above analyses of Jacobian matrices in po-
sition space (<m,<3) and orientation space (1<p%3)
respectively. Firstly, whenm,, 3, 7p.i(q;)
[z(q;),y(q;), 2(q;)]*. Then, from (5) we can define a general
positon Jacobian matrix (3xn) as

9z(q;) 9z(q,)

) 9q; 0
mp=3 By(qé-) Oy(qd)
Jp’i = oq1 9q; 0 (24)
0z(q,) 0z(q,) 0
oq 9q;

0 0
20 Piyi O3 (A7) Newt, whenmg = 3 and 7,.(q,) is defined as (18) in

orientation space. Then, we can define a general orientation
Jacobian matrix]’gf;:3 (3xmn), which is justJ,; analysed
from (20) to (23) in orientation space.

Finally, if a general Jacobian matrix (62} in the max-
mum space ofm = m, + m, = 6 such asr;(q;,) =
[2(a;),y(a:), 2(a;), $i(4;), 0:(q;), ¥i(q;)]" is defined as

|

szs _ JmPZS

K3

(25)

P,
me=3
']0 A
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In this way, according taJ”"=%, we can define any Jacobian

matrix in any kind of space as It e
J;, = umgr=°
= [31‘,1’ Tt 3“» 0 |}m= [jia 0] (26)
D e
In (26) providing: = n, U™ is amx6 matrix and is used @2 |

to select objective space used selectively for hand task. For
example, when the objective space is given by 3-dimensional

such asri(q;) = [z(q;),y(q,), ¢i(g;)]*, U™ is 3x6 matrix d
as 8t
1 0 00 0 O ) . . . .
U™ — 010000 (27) Fig. 5. Obstacle avoidance of intermediate links
000100 ="M, Ay + (I, —* M} 'M;)2 (36)
In addition, being similar with (7) and (23), we can define |n (36), ! M is pseudo-inverse dfM; and?l is an arbitrary

i vector satisfying?l € R". From (36), we can obtain
Ji=>» AJ; (28)
j=1

M) > Alig” CM)T M AV, (37)
and Assuming that'l is restricted ag|'l|| < 1, then the extent
AJ. where Al 4 can move is denoted as
AJ; = [ A7 } (29) .
0. Alrg CMOT M AY <1 (38)

lll. AVOIDANCE MANII_DULAB.ILITY When rank(*M;) = m, (38) represents that the first
Here we assume that the desired trajectoryfrand the - ayoidance velocityA'i-4; can be described by an ellipsoid
desired velocity of the manipulator’s hand.) are given as  expanded inn-dimensional space, which indicatad+4; can

primary task. Then, according to (30), be freely realized inn-dimensional task space. The ellipsoid
g = Jnd (30) represented by (38) is named as the first complete avoidance
" manipulability ellipsoid. However, whenank(! M;) = p <
we can obtain m, the extent of the new first avoidance velocity'+); is
Gy = T na (I = T 1 (3 cenored @
AT OMEYT UM A, <1 (39)

In (31), J, is Jacobian matrix differentiatee, by g,
(*n = Jnd,), J5, is pseudo-inverse of ,, I, is nxn unit  This new first avoidance velocith 7%, = LM; 1M Aliy,
matrix, and'l is an arbitrary vector satisfyind? € R". The  can be described by an ellipsoid expandeg-dimensional

left superscript “1” of 'l means the first avoidance sub-taskspace. The ellipsoid represented by (39) is named as the first
executed by using redundant DoF. The following definitionpartial avoidance manipulability ellipsoid. Becayse m, the
about the left superscript “1” are also. By substituting (31jirst partial avoidance manipulability ellipsoid can be thought
into '#4; = J.q,,, the relation of'74; and,q is denoted as as a segment of the first complete avoidance manipulability

T —— _ o 1 ellipsoid as first and third links shown in Fig.2(a). Thus
Pai = JinFna + Jilln = T Jn) (32) rank(* M) determines the possible avoidance dimension of
Then, we define two variables shown as i-th link, therefore the condition to giveank(!M;) maxi-
SY .. mum number is essential for configuration control and avoid-
Attgi= 14 = Jid 0 (33)  ance control to maximize the shape-changeability degree.
and Next we will propose an assumption and prove it guarantees
A the rank of! M.
M,=J;(I, —J}J,) (34)

IV. ANALYSIS OF rank(*M,)

In (33), Als, is called by “the first avoidance velocity”. In . . . .
(33) T y Y A. Non-singular Configuration Assumption

(34), 'M; is a mxn matrix called by “the first avoidance
matrix”. Then, Alr 4 can be rewritten as “Non-singular Configuration Assumption” is

Ay =M (35)  rank(J 7Y = min{i,m} (1<v<i—m+1) (40)

The relation betweehiy; andA'+4; is shown in Fig.5. From In (40), J;”~*"™~! indicates the matrices including the
(35), we can obtairtl shown as column vectors sequentially chosen from the firgtolumns
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of J; without the lastn — i zero columns. That is then
column vectors sequentially chosen fraf as

~v—v+m—1

rank(J; ) =min{i,m} (1<v<i—m+1) (41)
In (41), for example, when =n andv =n — m + 1,
~ n—m+1l—-n ~ ~
JIn = [Jn,n7m+17 T 7]n,n] (42)

non-singularf

non-singular

ﬁ ............ /

non-singular

<4;-singular

non-singular

e

o

“N&RSingGRIFREHAGRIARBA OASUMIGHBA I8 HkiRd of

3) Other Resulty{m = m, = 1}U{m = m,}U{m =
me + 1}): Whenn>2m,

i (1<i < m)
rank(* M ;) = m (m<i<n —m) (47)
n—i~m (n—m <i<n—1)
Whenn < 2m,
i (1<i <n—m)
rank(* M;) = n—m (n—m<i<m) (48)

n—i~n—m (m<i<n—1)
The proofs of these results are shown in subsection IV-D.
C. Mathematical Discriptions
1) Mathematical Definitions.J,, can be decomposed as
J,=UxVT (49)
and Jﬁ, the pseudo-inverse aof,,, can be decomposed as
J=vztu” (50)

In (49) and (50),U is mxm orthogonal matrix satisfying
vUu” =U"U = I,,, V is nxn orthogonal matrix satisfying
vvT = vTv = 1,, ¥ is mxn matrix, which includes a
diagonal matrix composing of non-zero singular valued pf

and the rest parts are all zero elements. Here, we will discuss

mathematical denotation, which corresponds to the nogne condition thatrank(J,) = m. So, ¥ and =% can be

singular configuration described as Fig.6 in robot field.

B. Results

By (41), we will prove that we can obtain “Resultof
rank(*M;) (i =1,2,--- ,n — 1) as follows:

1) Results in Both Position and Orientation Spa¢gs =
my + mo N{2<m,<3}): Whenn>2m,

i (1<i < m)
Tag oy m (m<i<n —m)
rank("M;) = n—i~m (n—m <i<n — 2) (43)
lrm—-1(t=n-1)
Whenn < 2m,
i (1<i <n—m)
rank(* M;) = n—m (n—m<i<m) (44)

n—i~n—m (m<i<n—1)

2) Results in Position Spaddm = m,}N{2<m,<3}):
Whenn>2m,

i (1<i <m)
Tag oy m (m<i<n —m)
rank("M;) = n—i~m (n—m <i<n — 2) (45)
lrm—-1(t=n-1)
Whenn < 2m,
i (1<i <n—m)
rank(* M;) = n—m (n—m<i<m) (46)

n—i~n—m (m<i<n—1)

denoted as
m n-—m
01 0
Y=0m 0 (51)
0 Om,
and
m
01_1 0
>t=m (52)
0 ol
n—m 0
In (51) and (52)01> --- >0, > 0.

Generally,V can be defined with column vectofs (i =
1,2,--- ,n) as

V =[, Dy -+ ¥ (53)

In (53), column vector®; (j =1,--- ,m) are obtained as

J T =b07 (54)

andV can be redefined with row vectotg (i = 1,2,--- ,n)
as

V = [01,2, -, 0,)" (55)

In addition, whenrank(J,) = m, we know thatJ,, can
be also decomposed as

J,=U,%, V% (56)
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andJ;” canbe decomposed as

Jr=v,ztut (57)

In (56) and (57).U,, is mxm matrix satisfyingUmel =
vfu,, = I,,, U,, andU are sameV?Z is mxn matrix

m m

satisfying V??;Vm =1, andV,, is defined using firsin

column vectorsp; (j =1,2,--- ,m) in (53) as
Vi =01 e (58)
V.. is redefined referring to row vectofs (i = 1,2,--- ,n)
in (55) as
Vi = [B1m O] (59)

V._m is the rest block part oV exceptV,,. So,V,_,
can be denoted using column vectérs(j =m+1,--- ,n)
in (53) as

Viem = [Oms1 -+ 0] (60)

V._m can be redenoted referring to row vectars (i
1,2,---,n) in (55) as

1" (61)

Viem = [’bl,(nfm)a T afbn,(nfm)

¥ is mxm matrix, which is a diagonal matrix including
non-zero singular values aof,,. 3;" is alsomxm diagonal

m

matrix. So0,%,,, and X" are denoted as

m

m
g1 0
Y= m (62)
0 Om
and
m
Ufl 0
zh=m (63)
0 o1

And we divide V', into two block matrices (V,—pm),m
and V,, ,,) and divide V,,_,, into two block matrices
(V tn=m),(n—m) @ndV ., ,_,y), so thatV’ can be redenoted
as

V = [Vin Vaowl
m n—m
_ n—m (V(nm),m V(nfm),(nfm) >
m Vinm Vm7(nfm)
m n—m
n—m (A c
om <B D ) (64)

2) Decomposition of,,: Firstly, we define

L,=1,-JJ, (65)

Then, from (34),

'M;=J,L, (66)

If rank(J,) m. Then, according to (49) and (50) and
referring to (64),L,, can be decomposed as

L, = I,-vtuTuzv?
m n—m
_ . m Im 0 T
= L=V n—m ( 0 0 ) v
m n—m
T m I, 0 T
= VV 1% o ( 0 0 ) Vv
m n—m
. m 0 0 T
o n—m <0 In_m) v
m n—m
m n-—m o 0
_ m T
= n (Vm anm) n—m(O Inm> vV
n
m n—m VT
m m
n—m n
= n (V”_m) n—m (Vz;—m) (67)
In (67), becauseank(V,,_,,) = mnk‘(VZ_m) =n-—m,
we can obtain
rank(L,) =n—m (68)

D. Proofs of Results

We start these proofs by general relationrafk(! M)
shown in (75) through decomposirg\Z;. Here, firstly we
divide V,,_,, as

n—m
Vo = ? ‘ (Vvi,(n—m) ) (69)
n—i \ V(ni),(n-m)
In (69), Vi,(n—m) is
n—m
’Dl,(n—m)
Vi,,(n—m) =3 : (70)
ﬁi,(n—m)
and V(n—i),(n—m) is
n—m
D(i41),(n—m)
V(n—i),(n—'m) = n-—1 (71)

Un,(n—m)
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Then, according to (26), (67) and (69),M; can be
decomposed as

'M; = J;L,
i n—1 n—m n
= m (,]1 0 ) n (Vn_m) n—m (Vg m)
) n—m n

=m (J;) i (Vignomy) n—m (VE_.,) (72)

Then, we can obtain
rank(*M;) = rcmk;(j- Viin-m) vl )
) +rank(V (n—m) ngm) — 4
) + rank( i (n—’m))

rank(J

(\VAAY,

rank(J

+rank(V,,_ m) i—(n—m)
i) + Tank(vz}(nfm)) + (TL - m)
—i—(n—m)

= rank(J;) + rank(Vi (n—m)) =1

rank(J

(73)
and

rank(J; Vi (n-m) vl )
min{rank:(ji), rank(V; (n—m)),
rank(VE_ )}

min{rcmk(ji), rank(V i (n—m))

n—m}

rank(* M

IN

(74)

According to (41) and (95) in “APPENDIX?” (the proof
of (95) is shown in “APPENDICES &7?"), (73) and (74) can
be denoted as

min{i,m} + min{i,n — m} —i<rank(* M;)<
(75)

min{i,m,n —m}

(1): When{n>2m}n{1<i < m} or {n < 2m}N{1<i <

n—m}, by inputting these conditions into (75), we can obtain

rank(* M;) =i (76)

(2): When {n>2m}n{m<i<n — m}, by inputting these
conditions into (75), we can obtain

rank(* M;) = (77)

(3): When{n < 2m}n{n — m<i<m}, by inputting these
conditions into (75), we can obtain

rank(* M;) =n —m (78)

(4): When{n < 2m}n{m < i<n — 1}, by inputting these
conditions into (75), we can obtain

n—igrcmkz(lMi)gn—m (79)
(5): When {m = mpUm = mp +
mo N{2<m,<3}N{n>2m}in{n — m < i<n — 2} or

{m =m, = 1Um = m,Um = m,+1}N{n>2m}n{n—m <

i<n — 1}, by inputting these conditions into (75), we can
obtain

n —i<rank(*M;)<m (80)
(6): When {m = mpyUm = m, +
mo N{2<m, <3} {n>2m}N{i = n — 1}, we can obtain
"My =Jdua Vi) nemy Vi (81)
By inputting (41) and (95) into (73), we can obtain
1<rank(*M,_,) (82)
In addition, ' M,,_; can be rewritten as
"M,y = Jo1L,
(Jon—AJ) L, =-AJ,L, (83)
In (83), becausen#m,, AJ,, can be denoted as
AT, =AJ,, (84)
or according to (29)AJ,, is denoted as
AJ, = [ ﬁjﬂf’: } (85)

In (84) and (85),AJ, , is described as

AJP»” = [Ozlx(oRnnﬁE)? e zn ( R pE)} }mp (86)

n

From (86), we know that all column vectors are the vertical
vectors to °R,,"p in m,-dimensional space. Therefore,
these all column vectors iiJ, ,, can be thought that they
are in (m, — 1)-dimensional space. Then, we can obtain
rank(AJ, ,)<m, — 1. And becauseank(AJ, ,,)<m,, we
can obtainrank(AJ,)<m,—1+m, = m—1. And because
rank(L,) =n —m>m — 1 from (68), so, we can obtain

1§rank(1Mn,1)§m -1 (87)

In this way, the results from (43) to (48) are proved in above
six rough conditions as shown (76), (77), (78), (79), (80) and
(87).

V. CONCLUSION

This work was supported by Grant-in-Aid for Scientific
Research (C) 19560254. In this paper, based on the concept
of avoidance manipulability, we present “Non-singular Con-
figuration Assumption” for maximization of shape-changeable
space expansion (raitkM ;)) of intermediate links, which is
the most essential requirement for configuration optimization
of manipulator with high avoidance manipulability. In the
future, “Non-singular Configuration Assumption” will be used
for an on-line control system of a redundant manipulator as
the basic guarantee of high avoidance manipulability, where
the system should be stopped once manipulator's singular
configuration is detected.
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APPENDIX A
PROOF OFrank(V . m) =m

According to (41), we can obtainank(J,) = m, so,
referring to (56),J,, can be decomposed as

J, = U2,V =R, V! (88)

In (88), because-ank(U,,) = m andrank(3,,) = m, SO

rank(R,,) = rank(U,,X,,) = m. Then, according to (88), [10]

we can obtain

V5 =R, (89)
(89) can be rewritten as
[Vz;L—m),mv V?n,m} = R;11J7l (90)
According to (90), we can obtain
Vi =BT (91)
In (91), because rank(R.') = m and (41)
n—m+1l—n .
(rank(J,, * ) = m), we can obtain
rank(V%)m) =rank(Vym) =m (92)
APPENDIXB
Tank(vi,(n—m))
When 1<i < n — m, Vo, IS one part of

V(n—m),(n—m) as

n—m
7 Vi, n—m
meﬂnm:n_m_iG/ () ) (93)
(n—m—1i),(n—m)
Whenn — m<i<n, V() (n—m) iS ON€ part ofV; .,
as
n—m
A _n—m V(n_m),(n—m)
V’L;("*m) T i—n+m <V(i—n+m)7(n—m) (94)
So, from (?7?),
rank(V i (n-my) = min{i,n —m} (95)

(1]

[2]

(3]

(4]

(5]
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