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Abstract: This paper presents a method to predict a fish motion by Neural Network (N.N.) with on-line learning when
a robot is pursuing fish-catching by a net at hand through hand-eye robot visual servoing. We have learned by previous
experiments that fish is much smarter than a robot controlled by visual servoing whose escaping strategy is to make a
steady state distance error between the net at robot’s hand and the fish. To overcome the fish’s escaping strategy we
propose prediction servoing utilizing estimated future fish position by on-line adjusting N.N.. The effectiveness have
been proven through visual servoing and fish catching experiments.
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1. INTRODUCTION

Researches on catching a fish based on object fea-
ture recognition and visual servoing has been performed
[11[2][3]. But as the catching operation by a net at-
tached at the hand continues, the fish in the pool grad-
ually learned the action pattern of the robot hand and
began to generate intelligent avoiding behaviors against
the net that keeps chasing it. We can treat this kind of
fish strategy as innate intelligence to avoid its predator.
As a result, the system controlled under the traditional
robot system such as visual servoing based on velocity
PD feedback control failed to catch the smart fish occa-
sionally. That is the fish has found new strategies to es-
cape from the net pursuing it consistently. To overcome
this intelligence of the fish to survive, we challenged to
construct a more intelligent robot on the purpose of ex-
ceeding the fish’s intelligence for successful tracking and
catching operation.

Under the circumstance of fish’s avoiding behaviors
from the net, we consider that the robot can track the fish
and catch it easier if the control system can predict its
future motion. Thus, N.N.[4][5] is adopted to the cur-
rent robot system to learn the fish motion pattern and pre-
dict the future position[6][7]. We have tried to predict
the fish position in the future based on the position pro-
file of the fish in the past. But it did not give us good
prediction performance. In this paper, we propose a new
visual servoing approach, named prediction servoing that
can decrease the steady state error between the net and
the fish error by using neural network learning the fish’s
future trajectory through circular approximation and re-
sulted actual fish’s trajectory.

2. REAL-TIME RECOGNITION

Consider the 2-D raw-image of a target fish shown in
Fig.1(a), its corresponding 3-D plot is shown in Fig.1(b).
In Fig.1(b), the vertical axis represents the image bright-
ness values, and the horizontal axes represent the im-
age plane. To search for such a target fish in the raw-
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image, a geometrical triangular shape of the surface-
strips model as shown in Fig.2(a) is used. Let us denote
a set of the coordinates inside the surface of the model
as S;, and the contour-strips S, also the combina-
tion as S, the shape of .S;, is chosen to be the similar
shape to fish’s one. Since the pose in two dimensional
plane of surface-strips model S varies in time, it is de-
scribed by ¢(t) = [z(t),y(t),0(t)]T € L, designating
the pose of the origin of the model .S in the image space
L. Then S moves in L in time and a set or the pose of
the model is expressed as S(¢(t)). Then the brightness
distribution of raw-image overlapping to .S is expressed
as p(r),r € S(¢). The correlation function F'(¢) of the
surface-strips model with the image is given as

F@t) = > pr@®)— > pr@). @
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This means the integrated brightness difference between
the internal surface and the contour-strips of the surface-
strips model. The filtered result of (1) with respect
to Fig.1(a) is shown in Fig.2(b). We can see the fil-
tered result has a peak corresponding to the position of
the target fish in the raw-image. This correlation using
the surface-strips model means a shape-based filter since
F(¢(t)) takes into account the integration and differenti-
ation based on the object shape and the background noise
simultaneously, and we think this character is effective
for such noisy image as shown in Fig.1(a). Then the prob-
lem of recognition of a fish and detection of its pose is
converted to an optimization problem of F(¢p(t)) as

d" () = {p(t) | max F (1))} 2)
PcL

To recognize a target in a dynamic image input by
video rate, 33 [fps], the recognition system must have
real-time nature, that is, the searching model must con-
verge to the fish in the successively input raw images.
We adopt “1-Step GA”[3].

3. GLOBAL/LOCAL GA SEARCH

We employ an elitist preservation strategy of GA. The
genes in GA possess the information ¢, (i = 1,2,---,n)
of the position and orientation of ¢-th searching model.
Every generational stage of simple GA’s evolution, selec-
tion, crossover and mutation operators are performed to
evolve the genes toward the true position and orientation
¢, = [2p,Yp,0p] of the target fish in the raw-image.
The global GA search process in the loop, always make
efforts to find the highest peak indicating the fish in the
whole camera image. When the best searching model
indicated by the best gene has the highest fitness value,
which means that it matches to the fish in the raw-image,
the x,y, 0 and x,, y,,, 0,, get the same corresponding val-
ues.

Like you and me, if we were to track a moving target
with our eyes, at a certain degree we do not look at the
surrounding and just focus our attention on the target, that
is gazing it. Here, we think of how to propose a similar
action as the human being to real-time visual servoing. In
our proposed local search method, the genes of the best
individual is selected to be copied to all of the other indi-
viduals, thus making an intermediate population of iden-
tical individuals for possible solution of the subsequent
population. Next in the reproduction process, except for
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Fig. 5 Circular approximation by using N.N.

that first ranking individual, in order to increase the fit-
ness value of the others and at the same time to obtain
better position and orientation results, a mutation opera-
tion is gradually performed on the lower level bits of the
genes. When the mutation is limited to four bits of the
lower level, sixteen reproduction patterns can be obtained
for one positional direction. When the mutation is limited
to three bits, eight patterns can be obtained and when it
is limited to two bits, four reproduction patterns can be
obtained. Fig.3 depicts the three level of gazing area and
the level is determined by the highest fitness value, rep-
resenting how much degree the possible solution matches
to the position and orientation of the target fish in the raw-
image. The transition of the gazing level is depending on
the highest gene’s fitness value as illustrated in Fig.4. As
you see in Fig.4, the local search technique focuses on
the highest point. Thus, faster and correct detection of
the target will be possible. Thus, faster and correct detec-
tion of the target will be possible.

In practice, once the global GA has achieved the stage
of the detection of a target, after reaching a certain fitness
value as a threshold value, it switches to the local GA that
performs the fine and fast recognition of the target. Using
the combined GA, the task executed by machine to search
for a target and track the fish can be thought to be similar
to the same task done by human.

4. NEURAL NETWORK LEARNING

4.1 Circular Approximation

Assuming a line to be a circle with an infinite ra-
dius, any three coordinates can be connected by one cir-
cle. Here, 5" and r!s" denote the past fish posi-
tion coordinates, and rf ish does the current fish posi-

tion coordinates as shown in Fig.5. Similarly f'f+k de-
notes the predicted fish position coordinates in the fu-
ture k-control period based on the circular approxima-
tion, and p;, = (pj,q;) does the center coordinates of
approximated circle at current time ¢{. Here we denote
pP; = rf”h —pjand Ap; = p; — p;_;, and consider
the equation shown as

t=p; x Apj, 3)

where X denotes outer product. Using z-component of
the vector £ = [t,,t,,t.]7, the value of angular velocity
can be approximated by the covering distance by adopt-
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r; instantaneous radius of the circular trajectory of the
fish is calculated in (5). o expresses the angle of the cur-
rent fish position based on the horizontal line shown in
Fig.5. Then r£" =[x}, y;]" is

[ ]

Then predicted future position quc+ & (ijﬂ . QjCJr )
through circular approximation after kAt[s] from current
time ¢ is calculated by

4.2 N.N.-Learning by Circular Approximation Error

75 COS v

,,,Fzsh _ -
'I"j SIn &

J

(6)

rj cos(a + kw; At)

rjsin(a + kw;At) 7

~C
Ti+k =Pj {

Should predicted future fish posituin f'ﬁ_ . and actual
fish position 713" at time (j + k)At be exactly same,
the circular approximation error is 0. However since it
is very rare that the fish’s trajectory should coincide with
the circular orbit, the error A’f“ﬁr &, appears in the future
time at (j + k)At as ‘

~C __ _ Fish ~C
Afjie =Titk — Ttk ®)

Here the definition of prediction error £, is expressed
at kAt[s] in the future as

)

The block diagram of future fish position prediction using
N.N. being learned by Back Propagation (B.P.) is shown
Fig.6. First 7@;’1 &, 1s calculated by circular approximation
using (7). The input of the N.N. at jAt = ¢, Af«]C, is
Fish
J
predicted position errors f'jc at (j — k)At, which ascends
back kAt[s] from current time,

.C _ _Fish _C
Arj =r; -

Ne,
Ejir = |A77, ]

the error vector between current fish’s position r and

P (10)
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As being shown in Fig.5, the predicted output of N.N. at

N
future time (j + k)At is represgnted by ;). Then the
(@51

z; +k,z}f+],j) is calculated
~N
by adding N.N. output & itk predicted at jAt to circular

; i 2CN
predicted position 7 itk =

approximation restlt f“% ks

P = (1n
In the block diagram of Fig.6, final predicted position ob-
tained through summation of circular approximation and

correction of N.N., that is f*ﬂj,\g is calculated by (11).

The teaching signal of NlN., 5r§v is

~N
gk T O

-5

#¢

orl = A y

! (12)

Since N.N. always learns to decrease the error 57’?’ to 0
by B.P.,, N.N. changes its coefficients for such objective
as

5T =0 (t— oo). (13)
Therefore,
AP =4 (14)

is derived from (12). Then considering (8), (11) and (14),
we get

FON
J

Fish

N
Tj

(t — 00), 15)

and this describes circular approximated position with

N.N. compensation at jA¢t will converge into the actual

fish position 755"

5. FISH TRACKING/CATCHING
CONTROL

5.1 Visual Servoing

The experimental system is explained as follows. The
camera-to-fish distance is 450 [mm]. The size of the wa-
ter pool is 390x460x 100 (depth) [mm], and the net is
100x 125 [mm]. Catching the fish is executed by pulling
up the net when the fish is within an area of 60x80 [mm]



Table 1 Gain parameters

Kp [0.950.95]

Ky [0.600.60]

Link [ L1 L2 L3 L4 LS L6 L7 ]
K sp [ 3200 3200 1400 1400 1000 1000 1000 ]
Ky [ 13621362 596 596 596 426 426 ]

at the center of the net. The range area of the camera
view is 150 and 120[mm)] in x and y directions. We have
shown in section 2 that £%" represents the current fish
position by “1-Step GA”. In the 2-D servoing experiment,
which fixes the camera-to-fish distance, the camera cali-
bration using a parameter such as camera focal length is
not performed.

The aforementioned real-time recognition system in
section 2 using the shape of the fish as the knowledge
base is depicted in the upper side of the block diagram in
Fig.7. In the figure, Ar = [AW X}, , W Y ] is the X-Y
deviation from the camera center to the fish expressed in
the world coordinates.

To make the based coordinates >, the camera coor-
dinates, to be clear, superscript “C” is added as “rIish,
The error vector of the net position to the fish, ACr, is

A%, =€ (16)

Here the net position in X¢ is constant and set to be
CrNet — 0 by having the origin of ¥¢ to be the cen-
ter of the net. A®r,, is converted to the position AWr,,
described in X through 3 x 3 matrix of W R expressing
the orientation relation of ¥y, and X as

w w c
AV r, =" RcA"r,.

_C ,rNet.

Fish
Tn n

a7)

Using the error A" r,,, the desired hand velocity is given
as

7 = KpAWr, + Ky(AWr, — AVr,_1),(18)

where K p and Ky are matrices of positive definite.

The desired joint variable g, is determined by inverse
kinematics from 74 by using the Jacobian matrix J(q),
and is expressed by

ag=J" (@)t (19)

where J T (q) is the pseudo inverse matrix of J(q). The
robot used in this experimental system is a 7-Link ma-
nipulator, Mitsubishi Heavy Industries PA-10 robot. The
control system, based on a PI control of PA-10 is ex-
pressed as

t
7= Ksp(qu— @) + Ks1 / (40— @)dt,  (0)
0

where g, — q is the velocity error of the joint angle, K sp
and K gy are symmetric positive definite matrices to de-
termine PI gain (Tablel). The orientation of the fish is
measured in real time, but in the tracking and catching
experiment, the measured orientation information is not
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Fig. 8 Experimental set up

considered as shown in the above equation. The manipu-
lator servo update rate is 100[Hz]. A diagram describing
the experimental set up is shown in Fig.8.

5.2 Prediction Servoing

As we know the nature of PD velocity servo system
that the system driven by equations from (18) to (20)
suffers steady state position error of AW, when the
fish swims with constant speed, this servo system can-
not catch the fish effectively, which will be shown later
by experiments. To overcome this defect of PD servo, we
devised a new velocity servo controller whose control er-
ror is calculated by the distance error between predicted
fish position in future time f"SJrNk and current fish posi-
tion. We named this servoing method as “Prediction Ser-
voing”. By replacing A" r,, in (18) into f'g_gc defined
as

WaC,N _ W C.C,N
AT p =" Ro AV 0, 21
CaC,N _CnC,N C, Net
A =" =y (22)

we define the prediction controller as follows,
7t =K pAYVrON + Ky (A, — AV, ). (23)

It will be noticed that AW r,, is used in (23) for veloc-
ity feedback. Since this term is aimed to work for sta-
bilizing the robot hand and reducing the hand oscilla-
tion derived term, AW, is used instead of AW#()).
Kp, Ky, Kgp, Kgy are shown in Table 1.

6. EXPERIMENTS

Here we will evaluate the effectiveness of simple vi-
sual servoing control and the proposed prediction servo-
ing control by some experiments. The target fish is only
one and the tracking time is 90[s] continuously. From
the detected position in real time, the future position after
k - At = 0.48[s] from current time is predicted, and the
predicted one is compared with the actual fish position at
the same time after 0.48[s] has passed. During this track-
ing experiment a net attached at the hand is moving with
the hand motion at the bottom of the pool in horizontal
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Fig. 11 Recognition and error results

x-y plain. This means the net always give the fish threat
but it does not execute a picking operation.

Fig.9 shows x and y trz}{"ectories of actual position
r'ish and predicted one f'f+ &, under visual servoing con-
trol during 90[s]. Both trajectories are almost overlap-
ping, meaning the visual servoing works stably and pre-
diction task also. During the experiment fitness value of
1-step GA and the distance error between fish and net po-
sition |A®r,,| is shown in Fig.11(a). Since the fitness
value is almost to be 1.0, representing the recognition
worked stably. The steady state error of |A®r,,| is about
40[mm]. Fig.10 is x and y trajectories of actual posi-
tion and predicted one under the prediction control. The
prediction servo control is stable and during the control
real-time recognition of the fish is confirmed to be suc-
cessfully stable. Fig.11(b) is on the condition of predic-
tion servoing. The difference from Fig.11(a) is that the
position error changes gradually, meaning |A“r,,| some-
times decreases to about 10[mm] and this value is small
enough to catch the fish by pulling up the net.

Further data of visual servoing are shown in
Figs.12(a), 13, 15. Fig.12(a) depicts fish and net tra-
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Fig. 12 Fish and net trajectories during visual servoing
and prediction servoing

jectories with time history, corresponding photos are in
Fig.13, and the servo errors of A9r,, = [A%z,,, A%y,]
are shown in Fig.15. From these figures the PD visual
servoing is not effective to catch fish because there ex-
ists steady state error, which is understandable nature of
PD velocity control under the fish escaping with constant
velocity.

Contrarily with these results prediction servoing per-
formances shown in Figs.12(b), 14 and 16 represent the
steady state error decreases and it oscillates gradually
around zero, indicating prediction servo may overcome
the fish’s strategy to escape from the PD control visual
servo by generating the system steady state error. This
will be confirmed in the next experiment.

About fish catching experiment, by prediction servo-
ing, the photos taken by hand eye camera is shown in
Fig.17. Net and fish trajectory with time history are
shown in Fig.18. In Fig.18, the time at 0.96[s] indicates
when the servoing control strategy is changed from vi-
sual servoing to prediction servoing. Before that time
point “B” the net looks to be delayed with steady state
error, but after that point the net rapidly catch up with the
fish. The fish velocity and hand velocity are compared
in Fig.19, showing at point “B” (this “B” is correspond-
ing to the B in Fig.18) the net moves faster than the fish
to accelerate and catch up. At point “C” the net veloc-
ity rapidly decreased to zero and catching operation has
been triggered by recognizing the fish stays at almost the
center of the net, resulting in successful catching the fish.
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Fig. 13 Fish and net motion image in visual servoing
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Fig. 15 Fish position error in visual servoing

7. CONCLUSION

This paper presents a method to predict a fish motion
by Neural Network (N.N.) with on-line learning when a
robot is pursuing fish-catching by a net at hand through
hand-eye robot visual servoing. By visual servoing ex-
periments and prediction servoing experiments, we have
shown prediction servoing can reduce steady-state error
to zero and catch a escaping fish by catching up with the
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Fig. 19 Fish and net velocities
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