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Hand & Eye-Vergence Dual Visual Servoing
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Abstract—1In this paper, we propose a new two-way visual
servoing method, named as hand & eye-vergence visual servo-
ing. This idea stems from animal’s evolution history, predator
have evolved their eye positions to be at the front face and
their eyes turn to gaze at the target prey to be suited to
triangulation, enhancing the ability to measure precisely the
distance to the prey for catching it. This animal’s visual tracking
includes motion control by visual servoing and triangular eye
vergence. Our proposed method includes two loops: an outer
loop for conventional visual servoing that direct a manipulator
toward a target object and an inner loop for active motion of
binocular camera for accurate and broad observation of the
target object. The effectiveness of the hand & eye-vergence
visual servoing is evaluated through simulations incorporated
with actual dynamics of 7-DoF robot on the view points of how
the new idea improved the stability in visual servoing dynamics
and the accuracy of hand pose.

I. INTRODUCTION

Tasks in which visual information are used to direct a
manipulator toward a target object are referred to visual
servoing in [1], [2]. This is the general definition of visual
servoing and it can be classified into two major groups:
position-based and image-based visual servoing. Position-
based visual servoing is to determine the object pose in
Cartesian coordinate frame and lead to Cartesian robot
motion planning, [3], [4]. On the other hand, in an image-
based visual servoing, image features are measured in the
2-D image space, and the robot is controlled to move the
image features to a set of desired locations, [5], [6]. The
advantages and drawbacks of each visual servoing method
have been discussed by a significant amount of researches,
listed in Table I. Compare with image-based visual servoing,
position-based visual servoing is more understandable, the
visual servoing task is described in Cartesian space and it is
more like human-being’s space perception.

However, most visual servoing researches focus attention
on robot control problem, and simplify or omit the object
measurement problem, which is thought to be dealt with
in another research field: robot vision field. Visual servoing
system is generally an eye-in-hand configuration, in which
the camera is fixed on the end-effector. The point is that
we have to enhance both the camera observability and the
robot stability simultaneously, because they affect each other
in visual servoing. Keeping suitable viewpoint is important
for object observation. It can provide more information
of the object for fast and correct recognition. Unsuitable
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Fig. 1. Hand & Eye Visual servo system

viewpoint may possibly cause a part of the target object
or some feature points get out of the image, which will
cause the robot unstable. Some methods are proposed to
improve observability of the object, like using stereo camera
[7], multiple cameras [8], and two cameras: one is fixed
on the end-effector, the other is fixed in the workspace,
[9]. However, these methods only increase the number of
cameras to give different views to observe the object, the
cameras in these systems lack the adaptability to a changing
environment, that is, the ability to change the viewpoint along
with the moving object.

The final objective of visual servoing is generally for the
end-effector to approach an target object and then work on
it, like grasping. But recent researches on visual servoing
are generally tracking an object while keeping a certain
distance between the camera and the object, for the reason
that the possible searching area becomes small when the
target is nearing the camera, as shown in Fig. 2(a). Thus it
is necessary to change the pose of the camera to enlarge the
possible searching area in the case that the target is close to
the camera, as shown in Fig. 2(b). Since the cameras and the
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TABLE I
POSITION-BASED AND IMAGE-BASED VISUAL SERVOING

Advantage

Drawback

Position-based
Cartesian coordinate space

Trajectory planning is done in an intuitive

Require a model of the target object

problem and the control problem.

There is a clear separation of the measurement

Require camera and robot calibration

Familiar robot control design is used

Image-based

do not require a model of the target object

difficult to do trajectory planning
in the non-intuitive image plane,

Best suited to planar motion where

the plane is parallel to the image plane

difficult to non-planar motion where the plane
is not parallel to the image plane

Robust to camera and robot calibration errors

/ Possible Searching Area

(a) parallel stereo camera system (b) cross stereo camera system

Fig. 2. Possible area of parallel stereo camera system and cross stereo
camera system in (b)

camera and the motion of the end-effector. In this paper, we
present a hand & eye-vergence dual visual servoing system
as shown in Fig. 1, in which the hand-visual servoing loop
includes the active motion of binocular camera to maximize
accurate and broad observation of the target object.

With an eye-in-hand configuration, a problem exists, that
is the motion of the end-effector cause a fictional motion
of the object. Here we are interested in how to compensate
such a fictional motion of the target object. Consider about
the human’s action, we can perceive the target pose in
the world coordinate by subtracting the fictional motion
caused by the motion of ourselves, thus the influence on
recognition from the ego motion can be compensated. To
realize this compensation of ego motion, it is better to use the
kinematics relation of robot to calculate the fictional motion,
thus we chose position-based method instead of image-based
method. To apply such a intelligence into recognition system,
we propose an robust recognition method, called motion-
feedforward (MFF) compensation method. The MFF method
gives a relation that connects the rate of change of the
target pose in end-effector frame to the rate of change of
the joint angles. We use the relation to compensate the
fictional motion of the target based on the joint velocity, and
extract the real motion of the target in the camera images,
which can improve the performance of the image recognition
unit, making the recognition system dynamically stable. This
stable sensing brought additional merit to stabilize the visual
servoing motion.

We use model-based method to recognize 3-D target’s pose

in real-time. The matching degree of the model to the target
can be estimated by a fitness function, whose maximum
value represents the best matching and can be solved on-line
by“1-Step GA” [10]. Unit quaternion is used to represent
the orientation of the target object, which has an advantage
that can represent the orientation of a rigid body without
singularities.

The effectiveness of the hand & eye-vergence dual visual
servoing is evaluated through simulations incorporated with
actual dynamics of 7-DoF robot on the view points of
how the new idea improved the stability in visual servoing
dynamics and the accuracy of hand pose.

II. SIMULATOR AND ROBOT DYNAMICS

The Mitsubishi PA-10 robot arm is a 7 DOF robot arm
manufactured by Mitsubishi Heavy Industries. Our simulator
is model PA-10 (see Fig. 1), by using the actual physical
parameters of the PA-10 that are shown in Table II.

The general equation of motion of manipulator is

M(q)g+h(q,q) +4g(q) +d(q) =, (D
where, g: the joint displacement and q = [q1, g2, - - ,q7]7,
7: the joint driving force and T = [y, 72, -+ , 77T, M(q):

the inertia matrix, h(g, q): the vector representing the cen-
trifugal and coriolis forces, g(q): the vector representing
the gravity load, d(§g): the vector representing the frictional
force. Here, we assumed d(q) = 0.

Two cameras are mounted on the end-effector, modeling
CCD-TRV86 manufactured by Sony Industries. The frame
frequency of stereo cameras is set as 33fps.

III. ON-LINE EVOLUTIONARY RECOGNITION

First, we give the definitions of coordinate systems used in
this paper. World coordinate frame is defined as >y, the end-
effector’s frame is X, left/right camera coordinate systems
is X¢or, / Yo and target coordinate frame is X p;.

A. 3-D Measurement Method

We use a model-based matching method to recognize a
target object in a 3-D searching area. A solid models is
located in X, its position and orientation are determined
by six parameters, ¢ = [FrT Fel|T, where Pr =
FaFyP2T, Fe = [Fe,F ey,F e3]T. Here, the target’s
orientation is represented by unit quaternion [13], which has
a advantage that can represent the orientation of a rigid body
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TABLE I
PHYSICAL PARAMETERS OF THE PA-10

Joint Base Link1l Link2 Link3 Link4 Link5 Link6 Link7
Length(m) 0.200 0.115 0.307 0.143 0.225 0.245 0.080 0.020
Center of mass (m) 0.0750 —0.0518 0.0633 0.0536 0.0461 0.0803 —0.0186 0.0040
mass (Kg) 3.04 9.78 8.41 3.51 4.31 3.45 1.70 0.36
Inertia momently, (Kgm?) | N/A  123x1072 6.86 x 1072 3.70x 1072 279 x 1072 4.07 x 1072 1.09 x 1072 2.50 x 1073
Inertia momently, (Kgm?) | N/A 6.36x 1072 6.86x 1072 262x 1072 2.79x 1072 583 x 1073 1.09 x 1072 2.50 x 1073
Inertia momentI,, (Kgm?) | N/A 1.23x107!1 1.19x 1072 3.70x 1072 6.48 x 1073 4.07x 1072 6.97 x 1074 1.74 x 107*
without singularities. The left and right input images from Lot imope Right imase ess value
the stereo cameras are directly matched by the left and right { .95
. . . ! !
searching models, which are projected from 3-D model onto — i %5
. . i 175
2-D image plane. The matching degree of the model to the §'§5
target can be estimated by a fitness function F'(¥1)) by using 025

the color information of the target. Please refer to [12] for a
detailed definition of F'(¥1)). When the searching models fit
to the target objects being imaged in the right and left images,
F(E4p) gives the maximum value. Therefore the 3-D object’s
position/orientation measurement problem can be converted
to a searching problem of ©1) that maximizes F(¥)). We
solve this optimization problem by 1-step GA method that
will be explained in the next section.

In the following of this paper, we will omit the left
superscipt “E” of the definition of ¥4/ for abbreviation.

B. GA-based On-line Recognition

The theoretically optimal pose ™% (t) that gives the
highest peak of F'(1(t)) is defined as

P () = {9(t) | max F(y(t))}, 2
Pel
where L represents 6-DoF searching area of z, y, z, €1, €2, €3.
Here we use GA to search ¢™%*(t). The individual of
GA is defined as 1), ;(t), which means the i-th gene (i =
1,2,---,p) in the j-th generation. Denote t,"*(t) as the
highest peak in GA process,

Yot (t) = {4, () | 1/;maXL F(ip; ;(t)}

i,J

3)

In fact we cannot always guarantee the best individual

of GA 1p;**(t) correspond to the theoretically optimal pose
™ (t), because the number of GA’s individuals is limited.

The difference of ¥™**(t) and 1,,**(t) is denoted as

Bl |
g

Fig. 3. (a) parallel stereo camera system (b) configuration of F(¢) in
position x and z

Left image Right image

0
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Fig. 4. (a) cross stereo camera system (b) configuration of F'(¢) in position
x and z

From [Assumption 2], we have
AF(6%(t) = F(3p™* (1)) — (6)

These two assumptions depend on some factors such
as object’s shape, object’s speed, definition of F(1)(¢)),
parameters of GA and viewpoint for observing. We could
set such an environment to satisfy or close to the above two
assumptions. When above two assumptions are satisfied, (5)
and (6) will be satisfied, then AF(d2)(t)) is so-called Lya-
punov function. That means AF(§1p(t)) will be gradually
decreased to 0. Thus, from the above definitions, we have
d1p(t)—0, which means gradual stability in searching space
L, that is

F(yp1ee (1)) < 0.

ga

61/1(” - d)mam (t) B ,l/)g}laz (t) (4) max max
And the difference of F(4™(t)) and F(4(¢)) is Yoo (=", (t00) @
denoted as Let ¢, denotes a convergence time, then
AF(09(t) = F(p™*(t)) — F(gq " (1)) =>0. S 5@ =9 (t) — Pga (D<€, (e>0,8>1t) ()

Here, we present two assumptions.

[Assumption 1]: Assuming that F'(¢(t)) distribution sat-
isfies AF(d1(t)) = 0 if and only if dep(t) = 0.

[Assumption 2]: Assuming that F (Pga (1) >
F (3™ (t)), which indicates that the convergence speed
to the target in the dynamic images should be faster than
the changing speed of the dynamic F(1(t)) distribution as

time ¢ varying.

In (8), € is tolerable extent that can be considered as a
observing error. Thus, it is possible to realize real-time
optimization, because t;*“ (t) is or near to the theoretically
optimal ¥™**(t) after ¢.. Notice that the detected pose of
the object, 1/)2’;“, is the abbreviation of E't,bg:’lax, which is
based on the hand coordinate > .

Above discussion is under the condition of varying time.

Here, when we consider evolution time of each generation of
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GA denoted by At. The GA’s evolving process is described
as

P, () erelye P, ;(t+ At). &)

Obviously, this evolution time At will be possible to generate
somewhat bad influence. If we assume that this bad influence
on 1) (t) can be described as

6% (t)|<¢’,

then, it can be considered At can manage real-time optimal
solution. In (10), €’ is also tolerable extent as a observing
error and it is somewhat larger than e. Since the GA
process is executed only one time to output the semi-optimal
Yya " (t), we named this on-line recognition method as “1-
step GA”.

We have confirmed that the above time-variant opti-
mization problem could be solved by 1-step GA through
several experiments [10]. 12**(t) will be output as the
measurement result in each generation to control the robot
manipulator. We define

P(t) = (1), = 2,9, 2, 61,6, 6]
C. Maximum Observability

(€ >e>0), (10)

(1)

Here, we show an investigation into the influence of view-
point of observing on 3-D position/orientation measurement.
The distance between the origin of one camera to the origin
of ¥ is defined as L; /L,, and the angle rotating around y
axis of Yo, /X R is defined as 6; /0,.

We compare two stereo camera systems: parallel stereo
camera system (Fig.3(a)), where L; = L, = 75[mm)], and
cross stereo camera system (Fig.4(a)), where L; = L, =
250[mm), 6; = 6, = 20[deg]. A fitness value distribution
of F(¢) by scanning the x and z position of of ¥ g using
the moving model with fixed true values of (y, €1, €2, €3), is
shown in Fig.3(b) and Fig.4(b) corresponding to each stereo
camera system, Fig.3(b) and Fig.4(b). It can be seen that
when the position of the model near to the true position
(z,z) = (0,700)[mm], the fitness function has maximum
values in both Fig.3(b) and Fig.4(b). However, it shows that
the peak in Fig.4(b) is sharper than the peak in Fig.3(b).
As we know, GA find the maximum value fast in sharp
mountain. Thus, the real-time recognition is easier to be
performed in the case of cross stereo camera system than
that of parallel stereo camera system.

We have also done some investigations by comparing cross
stereo camera systems with different 6; /6,. with fixed L; and
L., from which we found that observing the object through
both centers of left and right cameras gave the sharpest
mountain. Based on the this, we consider that the stereo
cameras had better to keep changing their placement toward
a moving target object in order to prepare a good viewpoint
for a better measurement of a target object, which is the
concept of eye-visual servoing.

Since the maximum observability can be achieved in eye-
visual servoing, the object recognition can be performed
more precisely and the stability of the general visual servoing
to an object can be improved.

Time : t + At

Fig. 5. MFF Compensation. Notice ¥ and ¥ are relative coordinates,
here we suppose the end-effector is moving and the target is static.

IV. MOTION-FEEDFORWARD (MFF) COMPENSATION

A. Analysis of target’s motion in X

The target coordinate system is represented as X ,s. Since
solid models used to search for the target object are located
in the end-effector’s coordinate g, here we discuss the
changing of 1), based on the changing of W1p,, and the
configuration of the robot determined by . Such a relation
will be described by the following mathematical function,
which can distinguish these two affected motions clearly.

. Ej
E"/"M = [ E’IjM }

EMm

—¥Rw(q )Jp(Q)+ERW( )
WRe(@)F rv)do(q) | q

S(
—5("mul = S(Ferr)) " R (a)Jo(q)

+ 0 ERw(q) Wen

"Rw (q) 0 ] [ Wit ]

= Tn(@" ) a+ In(@) Vb (12)
Please refer to [7] for a detailed deduction procedural of (12).
The matrix J s in (12) describes how target pose change in
g with respect to changing manipulator pose in X g. The
matrix J in (12) describes how target pose change in X
with respect to the pose changing of itself in real word.

In this paper, we do not deal with the prediction of the
target’s motion in the real world, we take account of the
prediction of the target velocity in X based on the joint
velocity g of the manipulator, so we can rewrite (12) as

Py = Tu(a"$a)a (13)

Then the 3-D pose of the target at time t + At can be
predicted based on the motion of the end-effector motion at
time ¢, presented by
(t) + Papp At

Bt +At) =y, (14)
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B. MFF Compensation

In the same way as the above equation (13), (14), the pose
of the individuals %, ; in the next j + 1 generation can be
predicted based on the current pose,

v = Julg,P(t)q.
Y, it +At) =, (1) + PAL,

where At is the time cost in one generation. By using
(16), GA group will move together with the motion of
the target in X g, never loose it even under a high-speed
moving of robot manipulator, as shown in Fig. 5. Since the
effect on the recognition from the dynamics of manipulator
can be compensated, recognition by hand-eye cameras will
be independent of the dynamics of the manipulator, robust
recognition can be obtained just like using fixed cameras.

(15)
(16)

V. HAND & EYE VISUAL SERVOING
A. Desired-trajectory generation

The desired relative relationship of 3, and X is given by
Homogeneous Transformation as #4T",(t), the difference of
the desired camera pose X g4 and the actual camera pose X g
is denoted as ET g,. ET gy can be described by

ETpa = ETu(p(t) MTra(t),

Notice that Eq. (17) is a general deduction that satisfies
arbitrary object motion WT',,(t) and arbitrary objective of
visual servoing Z9T 5/ (t).

Differentiating Eq. (17) with respect to time yields

a7)

Epoa(t) = BTor ()M T pa(t) + T ar ()M T pa(t), (18)

Differentiating Eq. (18) with respect to time again

B oa(t) = ETos ()M T pa(t) + 25 Tar (M T pa(t)+
Ef ()M T ga(t), (19)

Where, M T4, M T g M T Eq are given as the desired visual
servoing objective. Ty, ETh;, £Ty; can be observed by
cameras using the on-line evolutionary recognition method
explained in Section III.

B. Hand-Visual Servoing Controller

The block diagram of our proposed hand & eye visual
servoing controller is shown in Fig. 1. The hand-visual
servoing is the outer loop. The controller used for hand-
visual servoing is proposed by B.Siciliano [13]. Here, we
just show main equations of the controller to calculate T,
which is output to control the robot manipulator.

(20)
21

W W, w
a, =" Tpq+ Kp," Tppa+ Kp." TE Ed

W w W B
a, =" wga+Kp," " wg pi+ Kp," Rg"Ae,

a=r@(| @ |- Ia.0d)+ -7 @I@)

(Ep(qy —q) + Ea(0—q)), (22)

T =MI(q)4, + h(q,q)q +g(q). (23)

Here, the error variables in (20), (21) are described in Xy ,
which can be obtained from the vectors in g in (17), (18),
(19) using the rotational matrix " Rz (q) through coordinate
transformation.

And J*(q) in (22) is the preudo-inverse of J(q) given
by Jt(q) = JT(JJ)1.

It has been proved in [13] that the system is exponentially
stable for any choice of positive definite Kp,, Kp, and
Kpp, Kpo, thus

tliglo Wrpgpi=0 tliﬂélo Wipgpi=0 (24)
Jim EAe=0 Jim Wwer.cra = 0. (25)
Then we have
Jin PTea=1 Jin *Fea=0 (9
Substituting Eq. (26) to Eq. (17), we have
Jim Ty = lim PTy, 27)

Eq. (27) proves stable convergence of visual servoing.

C. Eye-Vergence Visual Servoing Controller

The eye-vergence visual servoing is the inner loop of
the visual servoing system shown in Fig. 1. In this paper,
we use two pan-tilt cameras for eye-visual servoing. Here,
the positions of cameras are supposed to be fixed. The left
and right camera’s poses are defined by ¢, = [0;,¢]7,
ér = [0,1]T, where 6; and 0, are pan angles, and v is
title angle that is comman for both cameras. Another DoF
for the pose of the cameras is the angle rotating around the
z axis of ¥ g, which is the gazing derection of the camera.
Our eye-vergence visual servoing system does not include
this DoF because the gazing derection of the camera is not
changing in this case, which is meaningless for improving
target observability.

Since the object’s measurement result 4 is described in
Y.g, it can be transformed to ¥y and Ycr by Homoge-
neous Transformations as,

LT\ (CEp(t)) = “FTp(p ) PTar (9(1)),
ORI\ (“Fap(t)) = OPT g () T a (P (1))

The investigations in III-C shows observing the object
through both centers of left and right cameras gave the
sharpest mountain, which indicates the maximum observabil-
ity. Based on this, the objective of the eye-visual servoing is
given by
CL’LLd _ [CLl'd,CL yd}T _ 0, CRud — [CRl'd,CR yd]T —0.

G0

We define “L4 is the x and y direction of CLaj, and “ Ly
is the x and y direction of “*4p, then the controller of eye-
visual servoing is given by

¢ = Kp, (“Fuq =" ) + Kp, (“Fag —“T ), 31

d)R = KPR(CRud —CR il’) + KDR (CRud —CR i”)? (32)

(28)
(29)

where Kp,, Kp,, Kp,, Kp, are positive control gain.
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Fig. 6. Simulation of path control in x-z plane (the system is created by
OpenGL)
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Fig. 7. Results of hand & eye visual servoing in x-z plane by using MFF
method in ¥, .

VI. SIMULATION OF HAND & EYE VISUAL SERVOING

To verify the effectiveness of the proposed hand & eye
visual servoing system, we conduct the simulation of visual
servoing to a 3D marker that is composed of a red ball, a
green ball and a blue ball. The radiuses of these three balls
are set as 30[mm].

A. simulation condition

Visual servoing is usually performed to keep a fixed
relation with respect to a static or moving object. The visual
servoing described in this paper is that the object remains
stationary and the robot is commanded to move through a
reference path with respect to it. Such a visual servoing has
been performed by William J. Wilson etc. in [4], and they
named it as relative path control visual servoing.
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Fig. 8. Results of hand & eye visual servoing in x-z plane without using
MFF method in X, .

The initial hand pose is defined as X g,, and the homoge-
neous transformation matrix from Xg, to Xy is

0 0 1 918[mm]
w | -1 0 0 O0O}mm]
Teo=1 0 _1 0 455(mm] (33)

0O 0 0 1

B. simulation of path control in x-z plane

In this simulation, the desired hand time-varying trajectory
expressed in X g, is

Eoxpa(t) =ro sm%’rt
Eoypa(t) =0 ,
Ep — 27
OzEd(t) To COS%l (34)
61Ed(t) - 0
EOGQEd(t) =0
Eoegpq(t) =

where the radius 7o = 100[mm], period T' = 60[s], as shown
in Fig. 6.

Firstly, We compare the hand & eye visual servoing in
x-z plane with the proposed MFF method and without MFF
method separately.

Fig. 7 shows the results of hand & eye visual servoing
by using MFF method, all these results are represented in
Y g,. Fig. 7(a) is the actual end-effector in x and y position
compared with the desired x and y. Fig. 7(b) is the end-
effector’s motion in y and z plane of Xg,. Fig. 7(c) is the
end-effector’s motion in x and z plane of X g,. Fig. 7(d) is
the end-effector’s motion in the orientation €¢; and e,. Fig.
7(e) is the end-effector’s motion in the orientation ey and
es. Fig. 7(f) is the end-effector’s motion in the orientation
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Fig. 9. Results of only hand visual servoing in x-z plane by using MFF
method in ¥ g, using parallel stereo cameras.

€1 and e3. Fig. 7(g) shows changing of the pan angles of
the left camera and the right camera. Fig. 7(h) shows the
changing of fitness value of the target’s recognition during
visual servoing.

Fig. 7(a) to (f) show us the stable control of the robot
manipulator. The errors between the actual and desired
position in Fig. 7(a) and (b) is small, less than 10[mm]. As
Fig. 7(c) shown, the desired motion of end-effetor in x and
z plane is a circle, and the actual positon is close to it. The
distribution of the end-effector’s actual orientation €q,e9,€3
is converged to the desired value O, error is less than 0.02
(about 3[deg]). Fig. 7(g) shows the placement of the left and
right cameras keep changing to recognize the object easily.
It confirmed the adaptability of the mobile stereo cameras.
Fig. 7(h) shows the fitness value keep high, which means
precise recognition of the object during visual servoing. It
verified that once “1-step GA” finds the closeness model of
the target object, the model will keep overlapping the target
object, never lose it, because of the MFF method that can
compensate the target’s fictional motion coming from the
robot itself.

On the other hand, as shown in Fig. 8, the visual servoing
could not be performed (even in the first 3 seconds) in the
case of without using MFF method. When the robot starts to
moving, the pose of target object in ¥ g is changed due to the
dynamics of the robot manipulator. Without MFF method’s
compensation, the “1-Step GA” can not recognize precisely,
wrong recognition result will lead to wrong control of the
robot, which makes the recognition more difficult. As shown
in Fig. 8(h), the fitness value of the recognition is decreasing
to about 0.2, in such case, the target object is considered as
to be lost, and the robot can not be normally controlled. The

Right
Camera

y
TargetObject

Fig. 10. Simulation of path control in y-z plane (the system is created by
OpenGL)
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Fig. 11. Results of hand & eye visual servoing in y-z plane by using MFF
method in ¥, .

reason of target object lost is considered as GA’s convergence
speed was not faster than the target speed relative to the
camera.

Secondly, we compare the visual servoing by using the
hand & eye visual servoing system and fixed parallel stereo
cameras separately. Fig. 9 shows the results of path control
visual servoing with using MFF method, in the case of using
parallel stereo cameras. Compare with Fig. 7, we can find
that the errors between the actual and desired postion are
bigger, especially in Fig. 9(c), the radius of the circle of the
actual position in x and z plane is about 20[mm] smaller than
the desired one. The distributions of the end-effector’s actual
orientation €,e2,€3 in Fig. 7(d) to (f) are around the desired
value 0, errora are bigger than using mobile stereo cameras,
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Fig. 12. Results of only hand visual servoing in y-z plane by using MFF
method in ¥, using parallel stereo cameras.

about 0.04 (6[deg]). Fitness value of the target’s recognition
during visual servoing is shown in Fig. 9(g), from 10[s] to
50[s] the fitness value is decreasing to 0.6, where a part of the
object got out of the camera view because the stereo cameras
are fixed to be parallel, they do not have the adaptability for
recognition.

C. simulation of path control in y-z plane

In this simulation, the desired hand path control trajectory
expressed in X, is

Foxpa(t) =0
yra(t) =10 sian—’Tt

EOZEd(t) =1y COS%t (35)
Ce1pa(t) =0
Ocopa(t) =0

E°€3Ed(t) =0

where the radius 7o = 100[mm], period T = 60[s]. In this
case, in the hand & eye-vergence system, the tilt angle of
the camera that rotating around x axis of X, should also
be controlled to keep the target always in the center of the
camea’s gazing derection. Fig. 11(g) shows changing of the
pan angles of the left camera and the right camera, and the
tilt angle of both cameras.

The data shown in Fig. 11 and 12 is about 1/3 period.
Fig. 12 shows the results of path control visual servoing
with using MFF method, in the case of using parallel stereo
cameras. Compare with Fig. 11, we can find that the errors
between the actual and desired postion are bigger, especially
in Fig. 12(b), the radius of the circle of the actual position
in y and z plane is much smaller than the desired one. The
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distributions of the end-effector’s actual orientation €q,€9,€3
in Fig. 11(d) to (f) are around the desired value 0, error
are bigger than using mobile stereo cameras, about 0.04
(6[deg]). Fitness value of the target’s recognition during
visual servoing is shown in Fig. 12(g), the fitness value is
decreasing to 0.3 from 5[s] , where a part of the object got out
of the camera view because the stereo cameras are fixed to
be parallel, they do not have the adaptability for recognition.

VII. CONCLUSION

In this paper, we proposed a new two-way visual servoing
method, named as hand & eye-vergence dual visual servoing,
which includes two loops: an outer loop for conventional
visual servoing that direct a manipulator toward a target
object and an inner loop for active motion of binocular
camera for accurate and broad observation of the target
object.

Moreover, we propose a MFF method to compensate the
fictional motion of the target based on the joint velocity
of manipulator, and extract the real motion of the target
for the robot to recognize during visual servoing. Thus,
visual recognition preciseness is improved, and the visual
servoing become more stable. The effectiveness of the hand
& eye-vergence visual servoing has been evaluated through
simulations.
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