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Abstract— This paper is concerned with a new concept of avoidance manipulability inspired from ma-
nipulability, which represents the shape-changing ability of each intermediate link. Based on avoidance
manipulability, we present the “Local Non-singular Configuration Assumptions”. By analyses of avoidance
manipulability for redundant manipulators, we think that it gives the foundation to assess the shape-changing
ability to improve the structure at the first step of design for a new robot.
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1. Introduction

A variety of indices have been proposed for evalu-
ation of the performance of robot manipulators since
the mid-1980s. Up to now, the manipulability ellip-
soid [1] was presented to evaluate the static perfor-
mance of a robot manipulator as an index evaluat-
ing the manipulator’s shape on the view point of how
much the hand velocity can be generated by normal-
ized joint velocity, that is, the velocity generation abil-
ity of the end-effector.

Many researches were an argument in a condition
that an assumption guarantees the possibility that
the avoiding motion could be realized. However, fac-
ing the situation that the moving obstacle appears
suddenly near the manipulator, it requires the ma-
nipulator to possess the ability to avoid this moving
obstacle suddenly appearing by changing its shape
quickly, which is so-called “shape-changing ability”.
In this background, we firstly present the avoidance
manipulability ellipsoid concept as an index evaluat-
ing shape-changing ability of the manipulator, which
is inspired from the manipulability ellipsoid. Shape-
changing ability is just related to peculiar character-
istic of manipulator such as each link’s length and
whole manipulator’s configuration, and it is indepen-
dent of the shape of obstacles. Based on avoidance
manipulability, we present the “Local Non-singular
Configuration Assumptions”.

2. Avoidance Manipulability

2·1 Jacobian Matrix

Representing the position vector of each link by
rp,i ∈ Rmp and representing the orientation vec-
tor of each link by ro,i ∈ Rmo . Here, mp de-
notes the position dimension number of working space
(2≤mp≤3), mo denotes the orientation dimension
number of working space (0≤mo≤3). m = mp + mo

and n denotes the number of the manipulator’s links,
i = 1, 2, · · · , n, and m < n because of redundancy.

The vector and Jacobian matrix of i-th link including
both position and orientation dimension space can be
defined as

ri =
[

rp,i

ro,i

]
}m (1)

and

J i =
[

Jp,i

Jo,i

]

= [j̃i,1, · · ·, j̃i,i︸ ︷︷ ︸
i

, 0︸︷︷︸
n−i

] }m

= [J̃ i, 0] (2)

Here, the detailed formations of ri and J i are skipped.
2·2 Avoidance Matrix

Here, we define the first avoidance matrix 1M i (i =
1, 2, · · · , n − 1) as

1M i = J i(In − J+
n Jn)

= J iLn (3)

If rank(Jn) = m. Ln can be decomposed by

Ln = In − J+
n Jn = In − V Σ+UT UΣV T

= V V T − V

( m n − m

m Im 0
n − m 0 0

)
V T

= V

( m n − m

m 0 0
n − m 0 In−m

)
V T

=
( m n − m

n V m V n−m

) ( m n − m

m 0 0
n − m 0 In−m

)
V T

=
( n − m

n V n−m

) ( n

n − m V T
n−m

)
(4)

In (4), V is n×n orthogonal matrix, U is m×m or-
thogonal matrix, Σ is m×n matrix, which includes a
diagonal matrix composing of non-zero singular values
of Jn and the rest parts are zero elements.
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Fig.1 A simple example used to explain “Assumptions”

3. rank(1M i) (i = 1, 2, · · · , n − 1)
3·1 Local Non-singular Configuration As-

sumptions

“Local Non-singular Configuration Assump-
tions”are as

{
(a) : rank(J̃n

n−m+1→n
) = m

(b) : rank(J̃ i) = min{i,m}
(5)

In (5), J̃n
n−m+1→n

includes the last m column vec-
tors chosen from J̃n (J̃n = Jn), which is defined as

J̃n
n−m+1→n

= [j̃n,n−m+1, · · · , j̃n,n] (6)

For easily understanding the intention of (5) in
robotics field, Fig.1 shows a 4-link redundant manipu-
lator with a given shape in plane (m = mp = 2,mo =
0). In Fig.1, the directions of four ratational axices
are parallel (0z1//0z2//0z3//0z4) and 0zi = 0Riez

where 0Ri is rotation matrix denoting the relation be-
tween Σ0 and Σi, ez = [0, 0, 1]T . 0pE,3 and 0pE,4 are
described by broken lines (0pE,k denotes the position
vector from the origin of Σk to the end-effector with
respect to Σ0). 0p2,1, 0p3,1 and 0p3,2 are described by
dotted lines (0pi+1,k denotes the position vector from
the origin of Σk to the one of Σi with respect to Σ0).
j̃1,1, j̃2,1, j̃2,2, j̃4,3 and j̃4,4 are described by solid
lines. In addition, we define sin(q1) and sin(q1 + q2)
by S1 and S12, cos(q1) and cos(q1 + q2) are C1 and
C12 and so on.

According to “Assumptions(a)”, we can obtain

rank(J̃4
3→4

) = rank([j̃4,3, j̃4,4]) = 2 (7)

(7) indicates that j̃4,3 and j̃4,4 are independent.
According to “Assumptions(b)”, we can obtain

{
rank(J̃1) = rank([j̃1,1]) = 1

rank(J̃2) = rank([j̃2,1, j̃2,2]) = 2
(8)

(8) indicates that j̃1,1 is not zero vector and j̃2,1 and
j̃2,1 are independent.

(7) and (8) are mathematical denotation. Now, we
will explain the meaning of them in robotics field.
Assuming l1 = l2 = l3 = l4 = 1[m],

J̃1 =
[

−S1

C1

]
(9)

Obviously, always rank(J̃1) = 1 regardless of q1.

J̃2 =
[

−S1 − S12 −S12

C1 + C12 C12

]
(10)

Obviously, rank(J̃2) = 2 only if when q2 6=0.

J̃4
3→4

=
[

−S234 − S1234 −S1234

C234 + C1234 C1234

]
(11)

Obviously, rank(J̃4
3→4

) = 2 only if when q4 6=0.
According to above discussion, in this example, it
is called “Local Non-singular Configuration”when
q2 6=0∩q4 6=0.
3·2 Results

By “Assumptions”(5), we can obtain “Results”as
When n≥2m,

rank(1M i) =





i (1≤i < m)
m (m≤i≤n − m)

n − i∼m (n − m < i≤n − 2)
1∼m − 1 (i = n − 1)

(12)

When n < 2m,

rank(1M i) =





i (1≤i < n − m)
n − m (n − m≤i≤m)

n − i∼n − m (m < i≤n − 1)
(13)

3·3 Proofs of (12) and (13)
We start these proofs by decomposing 1M i. Here,

firstly we divide V n−m in (4) as

V n−m =
( n − m

i V i,(n−m)

n − i V (n−i),(n−m)

)
(14)

According to (2), (4) and (14), 1M i can be decom-
posed by
1M i = J iLn

=
( i n − i

m J̃ i 0
) ( n − m

n V n−m

) ( n

n − m V T
n−m

)

=
( i

m J̃ i

) ( n − m

i V i,(n−m)

) ( n

n − m V T
n−m

)
(15)

Then, we can obtain

rank(1M i) = rank(J̃ i V i,(n−m) V T
n−m)

≥ rank(J̃ i) + rank(V i,(n−m) V T
n−m) − i

≥ rank(J̃ i) + rank(V i,(n−m))

+rank(V T
n−m) − i − (n − m)

= rank(J̃ i) + rank(V i,(n−m)) + (n − m)

−i − (n − m)

= rank(J̃ i) + rank(V i,(n−m)) − i (16)
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and

rank(1M i) = rank(J̃ i V i,(n−m) V T
n−m)

≤ min{rank(J̃ i), rank(V i,(n−m)),

rank(V T
n−m)}

= min{rank(J̃ i), rank(V i,(n−m)),

n − m} (17)

Then, inputting “Assumption(b)”and (55) into (16)
and (17) (the proof of (55) is shown in “Appendix”),
we can obtain

min{i,m} + min{i, n − m} − i≤rank(1M i)≤
min{i,m, n − m}(18)

When n≥2m, we will roughly discuss the four con-
ditions (1≤i < m, m≤i≤n−m, n−m < i≤n− 2 and
i = n − 1) respectively as following.

(1): When 1≤i < m, by inputting this condition
into (18), we can obtain

rank(1M i) = i (19)

(2): When m≤i≤n−m, by inputting this condition
into (18), we can obtain

rank(1M i) = m (20)

(3): When n − m < i≤n − 2, by inputting this
condition into (18), we can obtain

n − i≤rank(1M i)≤m (21)

(4): When i = n − 1, we can obtain

1Mn−1 = J̃n−1 V (n−1),(n−m) V T
n−m (22)

By inputting “Assumption(b)”and (55) into (16), we
can obtain

1≤rank(1Mn−1) (23)

In addition, 1Mn−1 can be rewritten as

1Mn−1 = Jn−1 Ln

= (Jn − ∆Jn) Ln

= −∆Jn Ln (24)

In (24), we can prove rank(∆Jn)≤m − 1 (defini-
tion of ∆Jn and proof are skipped). And because
rank(Ln) = n−m≥m−1 from (4), so, we can obtain

rank(1Mn−1)≤m − 1 (25)

Then, from (23) and (25), we can obtain

1≤rank(1Mn−1)≤m − 1 (26)

In this way, the result (12) is proved.

When n < 2m, we will roughly discuss the three
conditions (1≤i < n−m, n−m≤i≤m and m < i≤n−
1) respectively as following.

(1): When 1≤i < n−m, by inputting this condition
into (18), we can obtain

rank(1M i) = i (27)

(2): When n−m≤i≤m, by inputting this condition
into (18), we can obtain

rank(1M i) = n − m (28)

(3): When m < i≤n−1, by inputting this condition
into (18), we can obtain

n − i≤rank(1M i)≤n − m (29)

In this way, the result (13) is proved.

4. Conclusion
In this paper, we analyse the avoidance manipula-

bility of redundant manipulators in all kinds of spaces
(m = 2, 3, · · · , 6). Moreover, we find the assump-
tions of manipulator’s shape for ensuring the opti-
mal shape-changing ability of manipulator as much
as possible. We think that it is meaningful to assess
the shape-changing ability to improve the structure
at the first step of design for a new robot.

5. Appendix
5·1 Proof of rank(V m,m) = m (rank(B) = m)

If V is denoted by

V =
( m n − m

n V m V n−m

)

=
( m n − m

n − m V (n−m),m V (n−m),(n−m)

m V m,m V m,(n−m)

)

=
( m n − m

n − m A C

m B D

)
(30)

According to “Assumption(b)”, we can obtain
rank(Jn) = m, so, Jn can be decomposed by

Jn = UmΣmV T
m = RmV T

m (31)

In (31), because rank(Um) = m and rank(Σm) = m,
so rank(Rm) = rank(UmΣm) = m. Then, according
to (31), we can obtain

V T
m = R−1

m Jn (32)

(32) can be rewritten by

[V T
(n−m),m, V T

m,m] = R−1
m Jn (33)

According to (33), we can obtain

V T
m,m = R−1

m J̃
n−m+1→n

n (34)
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In (34), because rank(R−1
m ) = m and

“Assumption(a)”(rank(J̃
n−m+1→n

n ) = m), we
can obtain

rank(V T
m,m) = m (35)

Further, we can obtain

rank(V m,m) = m (36)

5·2 Proof of rank(V (n−m),(n−m)) = n − m
(rank(C) = n − m)

According to (30), we can obtain that

V T V =
[

AT A + BT B AT C + BT D

CT A + DT B CT C + DT D

]
(37)

and

V V T =
[

AAT + CCT ABT + CDT

BAT + DCT BBT + DDT

]
(38)

And because of the condition that

V T V = In (39)

So, from (37), we can obtain

AT A + BT B = Im (40)

Because of the condition that

V V T = In (41)

So, from (38), we can obtain

AAT + CCT = In−m (42)

AT and A can be decomposed by

AT = AUAΣAV T (43)

and

A = AV AΣT AUT (44)

In (43) and (44), AU is m×m matrix satisfying
AUAUT = AUT AU = Im, AΣ is m×(n−m) matrix
including singular values of A, AV is (n−m)×(n−m)
matrix satisfying AV AV T = AV T AV = In−m.
Then, we can obtain

AT A = AUAΣAΣT AUT (45)

and

AAT = AV AΣT AΣAV T (46)

According to (40) and (45), we can obtain

BT B = Im − AT A

= AUAUT − AUAΣAΣT AUT

= AU(Im − AΣAΣT )AUT (47)

Further, we can obtain

Im − AΣAΣT = AUT BT BAU (48)

In (48), because rank(B) = m and rank(AU) = m,
so we can obtain

rank(Im − AΣAΣT ) = m (49)

Then, according to (42) and (46), we can obtain

CCT = In−m − AAT

= AV AV T − AV

( m n − 2m

m AΣAΣT Ø
n − 2m Ø Ø

)
AV T

= AV (In−m −
( m n − 2m

m AΣAΣT Ø
n − 2m Ø Ø

)
)AV T

= AV

( m n − 2m

m Im − AΣAΣT Ø
n − 2m Ø In−2m

)
AV T (50)

In (50), because of (49), we can obtain

rank(
[

Im − AΣAΣT Ø
Ø In−2m

]
) = n − m (51)

and because rank(AV ) = n − m and (51), we can
obtain rank(CCT ) = n − m. Further, rank(C) =
n − m, that is

rank(V (n−m),(n−m)) = n − m (52)

5·3 rank(V i,(n−m))
When 1≤i < n − m, we can obtain the relation

between V i,(n−m) and V (n−m),(n−m) as

V (n−m),(n−m) =
[

V i,(n−m)

V (n−m−i),(n−m)

]
(53)

According to (52) and (53), V (n−m),(n−m) is (n −
m)×(n − m) matrix and rank(V (n−m),(n−m)) = n −
m, V i,(n−m) is i×(n−m) matrix and V i,(n−m) is one
part of V (n−m),(n−m). So, it is obvious that the i

row vectors of V i,(n−m) are independent and we can
obtain rank(V i,(n−m)) = i.

When n − m≤i≤n, we can obtain the relation be-
tween V i,(n−m) and V (n−m),(n−m) as

V i,(n−m) =
[

V (n−m),(n−m)

V (i−n+m),(n−m)

]
(54)

According to (52) and (54), V (n−m),(n−m) is one part
of V i,(n−m). So, we can obtain rank(V i,(n−m)) =
n − m.

In this way, we can summarize the very important
conclusion about rank(V i,(n−m)) (i = 1, 2, · · · , n) as
follows:

rank(V i,(n−m)) = min{i, n − m} (55)

[1] Tsuneo Yoshikawa, “Manipulability of Robot Mech-
anisms,” The International Journal of Robotics Re-
search, 4, 2, pp.3-9, 1985.
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