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Abstract— This paper is concerned with a new concept of avoidance manipulability inspired from ma-
nipulability, which represents the shape-changing ability of each intermediate link. Based on avoidance
manipulability, we present the “Local Non-singular Configuration Assumptions”. By analyses of avoidance
manipulability for redundant manipulators, we think that it gives the foundation to assess the shape-changing
ability to improve the structure at the first step of design for a new robot.
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1. Introduction

A variety of indices have been proposed for evalu-
ation of the performance of robot manipulators since
the mid-1980s. Up to now, the manipulability ellip-
soid [1] was presented to evaluate the static perfor-
mance of a robot manipulator as an index evaluat-
ing the manipulator’s shape on the view point of how
much the hand velocity can be generated by normal-
ized joint velocity, that is, the velocity generation abil-
ity of the end-effector.

Many researches were an argument in a condition
that an assumption guarantees the possibility that
the avoiding motion could be realized. However, fac-
ing the situation that the moving obstacle appears
suddenly near the manipulator, it requires the ma-
nipulator to possess the ability to avoid this moving
obstacle suddenly appearing by changing its shape
quickly, which is so-called “shape-changing ability”.
In this background, we firstly present the avoidance
manipulability ellipsoid concept as an index evaluat-
ing shape-changing ability of the manipulator, which
is inspired from the manipulability ellipsoid. Shape-
changing ability is just related to peculiar character-
istic of manipulator such as each link’s length and
whole manipulator’s configuration, and it is indepen-
dent of the shape of obstacles. Based on avoidance
manipulability, we present the “Local Non-singular
Configuration Assumptions”.

2. Avoidance Manipulability
2-1 Jacobian Matrix

Representing the position vector of each link by
rpi € R™» and representing the orientation vec-
tor of each link by r,; € R™c. Here, m, de-
notes the position dimension number of working space
(2<mp<3), m, denotes the orientation dimension
number of working space (0<m,<3). m = m, +m,
and n denotes the number of the manipulator’s links,
i =1,2,---,n, and m < n because of redundancy.
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The vector and Jacobian matrix of i-th link including
both position and orientation dimension space can be
defined as

ri=| 7y 1)

To,i
and
= 7]
= [3i,17 ) 5”7\0/] pm
= [, 0] (2)

Here, the detailed formations of r; and J; are skipped.
2.2 Avoidance Matrix

Here, we define the first avoidance matrix ' M; (i =
1,2,---,n—1) as

'M;=J,I,-J}J,)
=J,L, (3)

If rank(J,) = m. L, can be decomposed by

L,=I1,-J}J,=1,-vtuTuzv”

m n—m
_ T m I, 0 T
—vvi-v nm<0 0 ) 1%
m n—m
- m 0 0 T
=V n—m(O Inm) v
m n—m
m n—-m 0 0
_ m T
=n (Vi Vam) n_m<0 In_m> \%4
n—m n
=n (Vn_m) n—m (VTTL_m) (4)

In (4), V is nxn orthogonal matrix, U is mXxm or-
thogonal matrix, ¥ is mxn matrix, which includes a
diagonal matrix composing of non-zero singular values
of J, and the rest parts are zero elements.
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Fig.1 A simple example used to explain “Assumptions”

3. rank(*M,)
3-1 Local Non-singular

sumptions

“Local

tions” are as

{ (a): rank(jg )=m (5)
(b) : rank(J;) = min{i,m}

(i: 1,2,---,n—1)
Configuration As-

Non-singular  Configuration  Assump-

n—m+1l—n

In (5), jnn_mﬂﬁn includes the last m column vec-

tors chosen from J,, (Jn, = Jn), which is defined as

~ n—m+1l—n ~ ~

Jn = [Jn,nferl? T ’jn,n] (6)

For easily understanding the intention of (5) in
robotics field, Fig.1 shows a 4-link redundant manipu-
lator with a given shape in plane (m =m, = 2,m, =
0). In Fig.1, the directions of four ratational axices
are parallel (Yz;//%25//%23//°24) and °z; = Re,
where °R; is rotation matrix denoting the relation be-
tween ¥y and ¥;, e, = [0,0,1]%. OpE73 and OpEA are
described by broken lines (°p i, denotes the position
vector from the origin of ¥j to the end-effector with
respect to Xo). 0p271, 0p371 and 0p3,2 are described by
dotted lines (°p;,; ;, denotes the position vector from
the origin of ¥ to the one of X; with respect to X).
3171, 32,1, 3272, 3473 and 3474 are described by solid
lines. In addition, we define sin(q;) and sin(q1 + q2)
by S1 and Sia, cos(q1) and cos(qr + ¢g2) are Cp and
(12 and so on.

According to “Assumptions(a)”, we can obtain

rank(J" ) = rank((Fag. Jad) =2 (7)

(7) indicates that 5473 and 34,4 are independent.
According to “Assumptions(b)”, we can obtain

{ ran/i(jﬂ = mnlﬁ([.;l,;]) =1 (8)
rank(J2) = rank([joq1,J22]) =2

(8) indicates that 31’1 is not zero vector and 32’1 and

5271 are independent.
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(7) and (8) are mathematical denotation. Now, we
will explain the meaning of them in robotics field.
Assuming I} =1y =13 =14 = 1[m),

- [ =5
Jy = [ o, } (9)
Obviously, always rank(j 1) = 1 regardless of ¢;.
= =51 —S12 =512
Jo = 10
2 [ C1+Ciz Ch2 } (10)

Obviously, rank(jg) = 2 only if when ¢2#£0.

~ 354 —S234 — S1234  —S1234
j _ 11
4 [ Coza + Craza  Ciaza } (11)

Obviously, rank(j43_>4) = 2 only if when ¢470.
According to above discussion, in this example, it
is called “Local Non-singular Configuration”when
727#0Nq4#0.
3-2 Results
By “Assumptions”(5), we can obtain “Results”as
When n>2m,
i (1<i < m)
m (m<i<n —m)
n—i~m (n—m <i<n — 2)
l~m—-1(=n-1)

rank(* M;) = (12)

When n < 2m,
1 (1<i <n—m)
n—m (n—m<i<m)  (13)
n—i~n—m (m<i<n—1)
3-:3 Proofs of (12) and (13)
We start these proofs by decomposing ' M;. Here,
firstly we divide V,,_,, in (4) as

rank(* M;) =

n—m

i Vi7(n—m)
Vn—m - n—1 (V(n_7)7(n—m) (14)

According to (2), (4) and (14), ' M; can be decom-
posed by

‘M, =J,L,
i n—1 n—m n
—m (J; 0 ) n (Ve n-m (VL)
) n—m n

=m (jl ) i (Viv(”_m) ) n—m (Vf—m ) (15)
Then, we can obtain

rank(* M;) = rank(ji Vi (n—m) Vi)

> rank(J;) + rank(V; (m—m) vl y—i
> rank(J;) + rank(V (n—m))
+rank(VE

n—m

)—i—(n—m)
= rank(J;) + rank(V (n—m)) + (n —m)
—i—(n—m)

=rank(J;) +rank(V; (—m)) —i (16)
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and

rank(* M;) = rank(J; Vin—m) L2
< min{rank(J;), rank(V (n—m))
rank(VE_ Y}
= min{rank(ji), rank(V; (n—m))s

)

n—m} (17)

Then, inputting “Assumption(b)”’and (55) into (16)
and (17) (the proof of (55) is shown in “Appendiz”),
we can obtain

min{i,m} +min{i,n — m} —i<rank(* M;)<
min{i,m,n — m}(18)

When n>2m, we will roughly discuss the four con-
ditions (1<i < m, m<i<n—m, n—m < i<n — 2 and
1 =n — 1) respectively as following.

(1): When 1<i < m, by inputting this condition
into (18), we can obtain

rank(*M;) =i (19)

(2): When m<i<n—m, by inputting this condition
into (18), we can obtain

rank(* M;) = m (20)

(3): When n —m < i<n — 2, by inputting this
condition into (18), we can obtain

n —i<rank(*M;)<m (21)
(4): When i = n — 1, we can obtain
1Mn—l = jn—l V(nfl),(nfm) VZ:—m (22)

By inputting “Assumption(b)”and (55) into (16), we
can obtain

1<rank(*M,_1) (23)
In addition, *M,,_; can be rewritten as

1J\d-n—l = Jn—l Ln
=(J,—AJ,) L,
— _AJ. L, (24)

In (24), we can prove rank(AJ,)<m — 1 (defini-
tion of AJ,, and proof are skipped). And because
rank(L,) = n—m>m—1 from (4), so, we can obtain

rank(* M,,_1)<m — 1 (25)
Then, from (23) and (25), we can obtain
1<rank(*M,_1)<m —1 (26)

In this way, the result (12) is proved.
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When n < 2m, we will roughly discuss the three
conditions (1<i < n—m, n—m<i<m and m < i<n—
1) respectively as following.

(1): When 1<i < n—m, by inputting this condition
into (18), we can obtain

rank(*M;) =i (27)

(2): When n—m<i<m, by inputting this condition
into (18), we can obtain

rank(*M;) =n —m (28)

(3): When m < i<n—1, by inputting this condition
into (18), we can obtain

n —i<rank(*M;)<n —m (29)

In this way, the result (13) is proved.
4. Conclusion

In this paper, we analyse the avoidance manipula-
bility of redundant manipulators in all kinds of spaces
(m = 2,3,---,6). Moreover, we find the assump-
tions of manipulator’s shape for ensuring the opti-
mal shape-changing ability of manipulator as much
as possible. We think that it is meaningful to assess
the shape-changing ability to improve the structure
at the first step of design for a new robot.

5. Appendix
51 Proof of rank(V,, m) =m (rank(B) =m)
If V is denoted by

m n—m

V=n (V. Vo)

m n—m
— n—m (V(n—m),m V(n—m)7(n—m) )
m Vinm va(n—m)
m n—m
n—m [ A C
T m <B D > (30)
According to “Assumption(b)”’, we can obtain

rank(J,) = m, so, J, can be decomposed by
Jn=UnS,V] = R, V], (31)

In (31), because rank(U,,) = m and rank(X%,,) = m,
so rank(R,,) = rank(U,X,,) = m. Then, according
to (31), we can obtain

vl =R,'J, (32)
(32) can be rewritten by
[Va—m),mn Vﬁ,m] - R:nlJn (33)

According to (33), we can obtain

~n—m-+1l—n

Vinm =Ryl T, (34)
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In (34), because rank(R.,') = m and
“Assumption(a)” (rank(jzimﬂﬁn) = m), we
can obtain
rank(VZ;lym) =m (35)
Further, we can obtain
rank(V,m) =m (36)
52 Proof of rank(V(,_m)m-m)) = n — m
(rank(C) =n—m)
According to (30), we can obtain that
T AT T T TP 1
VIV | Gl s ctotprp | B
and
r T T T T
v AN AT s
And because of the condition that
viv =1, (39)
So, from (37), we can obtain
ATA+B'B=1,, (40)
Because of the condition that
vvl=1, (41)
So, from (38), we can obtain
AAT +cCct =1, ,, (42)
AT and A can be decomposed by
AT =AyteAvT (43)
and
A =AvaxTAygT (44)

In (43) and (44), AU is mxm matrix satisfying
AUAUT = AUTAU = I,,, AT is mx(n — m) matrix
including singular values of A, 4V is (n—m)x(n—m)
matrix satisfying AVAVT = AyTAy — 1, .
Then, we can obtain

AT A =AutzAsTAy”T (45)
and

AAT = AyaxTapayT (46)

According to (40) and (45), we can obtain
B'"B=1,-A"A
— AUAUT _ AUAEAETAUT
=4Uu(I,, - *x4xhH)4u” (47)
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Further, we can obtain
I, —424x” = AyT"BTBAU (48)

In (48), because rank(B) = m and rank(AU) = m,
so we can obtain

rank(I,, — 4Z4%T) =m (49)
Then, according to (42) and (46), we can obtain
cC” =1I,_,,— AA"

m n—2m

A AT
_ Av,AYT Ay, DD %) Ay,sT
="V Vn—2m< (%] a ) v

m n—2m

A AT
A _m DYDY 0] Ax,T
= Vln-m n—2m< o (0] >) v
m n—2m

_ Ay, InL*AEAET @ Ax,T
o n2m< (%] I, o, Ve 60

In (50), because of (49), we can obtain

I, -7 ¢ -
o I, o })—n—m(E)l)

and because rank(4V) = n —m and (51), we can
obtain rank(CCT) = n — m. Further, rank(C) =
n — m, that is

rank(|

Tank(v(n—m),(n—m)) =n—-m (52)
5-3  rank(V(n—m))

When 1<i < n — m, we can obtain the relation
between Vi)(n,m) and V(n,m))(n,m) as

Vi (n—m)

V (n—m—i),(n—m) (53)
According to (52) and (53), V(n—m),(n—m) I8 (n —
m)x(n —m) matrix and rank(V (,—m),(n—m)) =1 —
m, Vi (n—m) is ix(n —m) matrix and V; ,,_p,) is one
part of V(,_ ) (n—m). So, it is obvious that the i
row vectors of V; (,_,,) are independent and we can
obtain rank(V; (n—m)) = 1.

When n — m<i<n, we can obtain the relation be-
tween Vi,(n—m) and V(n—m),(n—m) as

V(n—m),(n—m) =

Vigem =] g 0o | (s
(i—ntm),(n—m)

According to (52) and (54), V' (,—m),(n—m) is one part
of Vi (n—m). So, we can obtain rank(V; m—_m)) =
n—m.

In this way, we can summarize the very important
conclusion about rank(V; —m)) (i = 1,2,---,n) as
follows:

rank(V; (n—m)) = min{i,n —m} (55)
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