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Abstract—In this paper, it proposes a dynamical robot model with multi-point elbow(Its modeling is
realized through the integration of constrained multi-point state and motion equation). The simulation
result shows that energy consumption when elbow is attached less than elbow is not attached.
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1. 緒言
多関節マニピュレータはリンクの数が増えるほど自
重が増してしまい，制御する為にはより大きな力が必
要となる．また，自重によって手先が下がってしまい，
手先の精度も悪くなる．そこで，人間が肘をつくことに
よって少ない力で正確に作業を行えることを考え、同
様に多関節マニピュレータにも同じことが言えるであ
ろうと考える。本研究では、多点肘つきロボットの動
力学モデル (多点拘束状態と運動方程式の統合により
モデル化を実現)を提案し、このモデルを使用して、肘
をついたほうが肘をつかない時より少ない消費エネル
ギーで正確に作業が行えることをシミュレーションに
より示す。

2. 拘束運動
2·1 ハンド拘束運動

ここでは次節で述べる肘つき拘束運動の説明の準備
のため，剛体リンクからなる sリンクマニピュレータ
の位置/力制御について考え，拘束面に接触しつつリン
ク先端のハンドで接触作業を行うロボットについて考
える．ただし，ここでは接点での摩擦力は無視できる
ものとする．Lをラグラジアン，q ∈ Rsを一般化座標，
τ ∈ Rsを一般化入力，また uをラグランジュの未定定
数，ft を摩擦力とするハンド拘束状態のラグランジュ
の方程式は，

d

dt
(
∂L

∂q̇
) − (

∂L

∂q
) = τ + (

∂C

∂qT
)T u − (

∂r

∂qT
)T ṙ

‖ṙ‖
ft(1)

と表される．ここで,手先の位置・姿勢ベクトル r ∈ Rs

と超曲面を表すスカラー関数の拘束条件 C は，順運動
学関係式より,

r = r(q) (2)

C(r(q)) = 0 (3)

と表される．ここで拘束されるハンドは作業座標系の
中で非拘束方向に運動できる自由度が残されているこ
とから s > 1である．ハンドに作用する拘束力 fnで表
すとき，uと fn の関係は,

u = fn/‖ ∂C

∂rT
‖ (4)

となる．ここで ‖● ‖はベクトル●のユークリッドノ
ルムを表す．拘束力 fnが作用するマニピュレータの運
動方程式は，式 (1)と式 (4)，そして関節の粘性摩擦に
より，

M(q)q̈ + H(q, q̇) + G(q) + Dq̇

= τ + {( ∂C

∂qT
)T /‖ ∂C

∂rT
‖}fn − (

∂r

∂qT
)T ṙ

‖ṙ‖
ft (5)

が導かれる [1]．M は s× sの慣性行列，H とGはコ
リオリ力・遠心力と重力の影響を表す s × 1の縦ベク
トル，Dは関節の粘性摩擦係数を表す s × sの対角行
列D = diag[D1, D2, · · · , Ds]である．また，本研究で
は一般化座標 qは関節角度，一般化入力 τ は入力トル
クを表す．

2·2 肘つき拘束運動

sリンクマニピュレータの中間リンクが p個の拘束

Ci(ri(q)) = 0 (i = 1, 2,…, p) (6)

を受けているときの運動方程式について考える．ここ
で ri は拘束を受けている第 iリンクの位置/姿勢を表
す運動学方程式であり，式 (2)と同様,

ri = ri(q) (7)

である．
式 (5)は，ハンド拘束運動を表している．拘束条件
が複数存在する場合には，式 (5)の右辺第 2項の拘束
力の係数ベクトルと右辺第 3項の摩擦力の係数ベクト
ルはそれぞれ，

(
∂Ci

∂qT
)T /‖ ∂Ci

∂rT
‖ = jc

T
i (8)

(
∂ri

∂qT
)T ṙi

‖ṙi‖
= jt

T
i (9)

の s × 1の縦ベクトルとなる．さらに，

Jc
T = [jc

T
1 , jc

T
2 , · · · , jc

T
p ] (10)

Jt
T = [jt

T
1 , jt

T
2 , · · · , jt

T
p ] (11)

fn = [fn1, fn2, · · · , fnp]T (12)

ft = [ft1, ft2, · · · , ftp]T (13)
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と定義する．Jc
T ,Jt

T は s × p行列であり，fn,ft は
p× 1の縦ベクトルである．これらを考慮すると，p個
の点で中間リンクが拘束されているマニピュレータの
運動方程式は，

M(q)q̈ + H(q, q̇) + G(q) + Dq̇

= τ +
p∑

i=1

(jc
T
i fni) −

p∑

i=1

(jt
T
i fti)

= τ + Jc
T fn − Jt

T ft (14)

となる．また，式 (6)を時間 tで 2回微分し，q̈の拘束
条件を求めると，

[
∂

∂q
(
∂Ci

∂qT
)q̇

]
q̇ + (

∂Ci

∂qT
)q̈ = 0 (15)

が得られる．マニピュレータが常に拘束面に拘束される
ためには，式 (14)の解 q(t)が時間 tに無関係に式 (6)
を満たさなければならない．式 (6)の時間微分によって
得られた式 (15)を満たす q̈と式 (14)の q̈が同じ値をと
るとき，式 (14)の q(t)は式 (6)を満たすことになる．

2·3 モータを含めたロボットダイナミクス

本研究では，マニピュレータの関節を動かすのに使
用するモータを直流サーボモータの等価な電子回路と
する．ここで，モータの端子電圧 vi,抵抗Ri,インダク
タンス Li,回路を流れる電流 ii,モータの角変位 θi,発
生トルク τgi,負荷トルク τLi,逆起電力 vgi,モータの慣
性モーメント Imi,逆起電力定数KEi,トルク定数KTi，
減速機の粘性摩擦係数 dmi とする．このときモータに
ついて次の関係式が成り立つ [2]．

電圧方程式 : vi(t) = Lii̇i + Riii(t) + vgi(t) (16)

逆起電力 : vgi(t) = KEiθ̇i(t) (17)

運動方程式 : Imiθ̈i = τgi(t) − τLi(t) − dmiθ̇i (18)

発生トルク : τg(t) = KTiii(t) (19)

ただし，磁界と各定数との関係から直流モータでは，
KTi = KEi(= K)であることが知られている．
ここで，式 (17)を式 (16)に，式 (19)を式 (18)にそ
れぞれ代入すると，

vi = Lii̇i + Riii + Kiθ̇i (20)

Imiθ̈i = Kiii − τLi − dmiθ̇i (21)

となる．また，モータを減速比が kiの歯車列を介して
マニピュレータに取り付けた場合，

θi = kiqi (22)

τLi =
τi

ki
(23)

となり，式 (20),式 (21)を i̇i と τi の式にすると，

Lii̇i = vi − Riii − Kikiq̇i (24)

τi = −Imik
2
i q̈i + Kikiii − dmik

2
i q̇i (25)

となる．式 (24),式 (25)をベクトル，行列で表記する
場合，

Li̇ = v − Ri − Kmq̇ (26)

τ = −Jmq̈ + Kmi − Dmq̇ (27)

と置く．ここに，

v = [v1, v2, · · · , vs]T

i = [i1, i2, · · · , is]T

(28)

であり，また，

L = diag[L1, L2, · · · , Ls]

R = diag[R1, R2, · · · , Rs]

Km = diag[Km1,Km2, · · · ,Kms]

Jm = diag[Jm1, Jm2, · · · , Jms]

Dm = diag[Dm1, Dm2, · · · , Dms]

Kmi = Kiki, Jmi = Imik
2
i , Dmi = dmik

2
i

と定義し，すべて正の要素を持つ．

式 (27)を式 (14)に代入して整理すると，

(M(q) + Jm)q̈ + H(q, q̇) + G(q) + (D + Dm)q̇

= Kmi + Jc
T fn − Jt

T ft (29)

となる．(14)と式 (15)の関係と同様に，式 (15)を満
たす q̈ と式 (29)の q̈ が同じ値をとるとき，式 (29)の
q(t)は式 (6)を満たすことになる．

2·4 複数拘束条件付，ロボット/モータの連立方程式

式 (29)と式 (15)の q̈ が同じ値をとるため，拘束力
fn は従属的に決定される．この関係を陽に表すため，
式 (29)，式 (15)を，

(M + Jm)q̈ − Jc
T fn

= Kmi − H − G − (D + Dm)q̇ − Jt
T ft (30)

(
∂Ci

∂qT
)q̈ = −

[
∂

∂q
(
∂Ci

∂q
)q̇

]
q̇

= −q̇T

[
∂

∂q
(
∂Ci

∂qT
)
]
q̇ (31)

と変形する．式 (31)の左辺の ∂Ci/∂qT は 1× sの横ベ

クトルであり，右辺の q̇T

[
(∂/∂q)(∂Ci/∂qT )

]
q̇は 1×1

のスカラーである．式 (30)，式 (31)，式 (24)を合わせ
て以下の様な式に表す．ただし，計算の簡単化のため，
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摩擦力 jt
T
i fti = 0(i = 1, 2, · · · , p)とする．




M + Jm −jc
T
1 · · · −jc

T
p 0 · · · 0

∂C1
∂qT 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

∂Cp

∂qT 0 · · · 0 0 · · · 0

0 0 · · · 0 L1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · Ls







q̈

fn1

...
fnp

i̇1
...

i̇s




=




Kmi − H − G − (D + Dm)q̇

−q̇T

[
∂

∂q ( ∂C1
∂qT )

]
q̇

...

−q̇T

[
∂

∂q ( ∂Cp

∂qT )
]
q̇

v1 − R1i1 − Km1q̇1

...
vi − Rsis − Kmlq̇s




(32)

慣性項 (M +Jm)が s×s行列，拘束力の係数ベクトル
jc

T
i が s× 1の縦ベクトル，∂Ci/∂qT が 1× sの横ベク
トル，インダクタンスLが s×sの対角行列であること
より，式 (32)の左辺第 1項の行列は (2s+p)× (2s+p)
行列である．
式 (32)は式 (10)，式 (12)，(26)の定義を用いると次
のように表される．




M + Jm −Jc
T 0

∂C
∂qT 0 0

0 0 L







q̈

fn

i̇




=




Kmi − H − G − (D + Dm)q̇

−q̇T

[
∂

∂q ( ∂C
∂qT )

]
q̇

v − Ri − Kmq̇


 (33)

ただし，

C = [C1, C2, · · · , Cp]T (34)

の p × s行列である．さらに，

M∗ =




M + Jm −Jc
T 0

∂C
∂qT 0 0

0 0 L


 (35)

b =




Kmi − H − G − (D + Dm)q̇

−q̇T

[
∂

∂q ( ∂C
∂qT )

]
q̇

v − Ri − Kmq̇


 (36)

とおくと，式 (33)は，

M∗




q̈

fn

i̇


 = b (37)

と表される．式 (37)を未知である q̈，fn，i̇の式にす
ると，




q̈

fn

i̇


 = M∗−1

b (38)

となり，未知である q̈，fn，i̇を同時に求めることがで
きる．ただし，上式が成り立つためにはM∗が正則行
列でなければならない．次節によりM∗の正則性を確
認する．

3. M ∗の正則性と逆行列算出法

3·1 M∗ の正則性

M∗ が正則行列であることを確認する．

まず，

[
A11 A12

A21 A22

]
の行列を考える．一般に全体の

行列が正則でかつ部分行列A11が正則であるとき，全
体のブロック行列の行列式は以下のようになる．

det

[
A11 A12

A21 A22

]
= detA11・det(A22 − A21A

−1
11 A12)

(39)

式 (39)を用いて，M∗について考える．M∗の左上の
(s + 1) × (s + 1)のブロック行列M1 は，

[
M0 −jc

T
1

∂C1
∂qT 0

]
4
= M1 (40)

(M0 = M + Jm)

と表され，行列式を求めると，M > 0と式 (8)の jc
T
i

の定義より，

detM1 = detM · det{∂C1

∂qT
M−1jc

T
1 }

=
1

‖ ∂C1
∂rT ‖

detM · det{∂C1

∂qT
M−1(

∂C1

∂qT
)T } (41)

と 表 さ れ る ．C1 が 独 立 な 拘 束 条 件 で あ り，
M−1 が 正 定 な 正 則 行 列 で あ る こ と よ り，
{(∂C1/∂qT )M−1(∂C1/∂qT )T } は q に拘わらず
常に正のスカラー値であるので，M1 は正則であるこ
とが分かる．
同様に式 (32)よりM2 を定義する．

[
M1 −jc

T
2

∂C2
∂qT 0

]
4
= M2 (42)

式 (42)の行列式を求めると,先程と同様に，M1 は正
則行列であることと式 (8)の jc

T
i の定義より，

detM2 = detM1 · det{∂C2

∂qT
M−1

1 jc
T
2 }

=
1

‖ ∂C2
∂rT ‖

detM1 · det{∂C2

∂qT
M−1

1 (
∂C2

∂qT
)T } (43)
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と表される．上記の議論と同様にして，M2 が正則で
あることがわかる．以上のことを繰り返すことによっ
て，M1,M2,· · · ,Mp−1 が正則な行列であることが分
かる．よって，

[
Mp−1 −jc

T
p

∂Cp

∂qT 0

]
= Mp (44)

も正則行列である．さらに |Mp| 6= 0，|L| 6= 0より，
[

Mp 0
0 L

]
= M∗ (45)

も正則行列であり，式 (45)がM∗と等しいことは，式
(32)の左辺と式 (35)のM∗ を参考にすることで明ら
かである．以上より，M∗ は正則行列であることが確
認できる．

3·2 M∗−1
の算出方法

正則なブロック行列が

[
A11 A12

A21 A22

]
で与えられて

いるとき，その逆行列はその部分行列A11が正則であ
るとき以下のように求められる．

[
A11 A12

A21 A22

]−1

=

[
A−1

11 + A−1
11 A12(A22 − A21A

−1
11 A12)−1A21A

−1
11

−(A22 − A21A
−1
11 A12)−1A21A

−1
11

−A−1
11 A12(A22 − A21A

−1
11 A12)−1

(A22 − A21A
−1
11 A12)−1

]
(46)

式 (46)よりM∗−1
は，

M∗ =

[
Mp 0

0 L

]−1

=

[
M−1

p 0

0 L−1

]
(47)

となり，M−1
p は，

Mp
−1 =

[
M−1 − M−1Jc

T ( ∂C
∂qT M−1Jc

T )−1 ∂C
∂qT M−1

( ∂C
∂qT M−1Jc

T )−1 ∂C
∂qT M−1

−M−1Jc
T ( ∂C

∂qT M−1Jc
T )−1

( ∂C
∂qT M−1Jc

T )−1

]

=


M−1{E − Jc

T M̃
−1

‖ ∂C
∂rT ‖ ∂C

∂qT M−1}

M̃
−1

‖ ∂C
∂rT ‖ ∂C

∂qT M−1}

M̃
−1

‖ ∂C
∂rT ‖M−1Jc

T

M̃
−1

‖ ∂C
∂rT ‖

]
(48)

と求めることができる．ただし，

(
∂C

∂qT
)M−1(

∂C

∂qT
)T 4

= M̃ (49)

である．

4. 順動力学の解法
式 (5)の運動方程式を陽に求めることは困難である．

特に本研究では肘をつくことによってハンドを遠くま
で伸ばし，作業範囲を広げる冗長マニピュレータを想
定しているため，式 (14)や式 (29)の運動方程式を求め
ることになる．
このような多リンクマニピュレータの運動方程式を
解析的に求めることはとても難しく，不可能と考えて
もよい．従って，ニュートン・オイラー法を利用して，
解析的に求めることの難しい運動方程式 (5)，式 (14)，
式 (29)を数値的に簡単に解くことができる方法がすで
に提案されている [3][4]．
まず，式 (29)を次のように置く．

MJ q̈ + BJ = τ̃ (50)

ただし，

MJ = M(q) + Jm

BJ = H(q, q̇) + G(q) + (D + Dm)q̇

τ̃ = Kmi + Jc
T fn − Jt

T ft

である．式 (50)の運動方程式をニュートン・オイラー
法により，正順計算を根元のリンクから各リンクごと
にハンドまで行い，逆順計算を逆方向におこなうこと
により，

τ̃i = izT
i

ini + Jmiq̈i + (Di + Dmi)q̇i (51)

と求めることができる．式 (50)の運動方程式は式 (51)
より τ̃ = [τ̃1, τ̃2,…, τ̃n]T と求めることができる．
次に q̈を求めるのに必要な s×s行列MJと s×1の縦
ベクトルBJ を計算する．この計算に上で示したニュー
トン・オイラー法を利用する．まず τ̃ = INV [q, q̇, q̈, g]
と置くと式 (50)は，

MJ q̈ + BJ = INV [q, q̇, q̈, g] (52)

と置くことができる．式 (52)に q̈ = 0を代入すると，

BJ = INV [q, q̇,0, g] (53)

となり，BJ が求まる．次に，式 (52) に g = 0, q̇ =
0, q̈ = ei(i = 1, 2,…, s)を代入すると，

mi = MJei = INV [q,0, ei,0] (54)

となる．miは慣性行列M の第 i列の成分であり，ei

は第 i行目が 1で，他は全て 0の l× 1行列であるの
で，式 (54)よりMJ = [m1,m2,…,ml]が求まる．

5. 結言
運動方程式の解析を行い，それをもとに行ったシミュ
レーションの結果を口頭にて発表する．
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