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Shape-grinding by Direct Position / Force Control with On-line
Constraint Estimation

Mamoru Minami and Weiwel Xu

Abstract— Based on the analysis of the interaction between a
manipulator’s hand and a working object, a model representing
the constrained dynamics of the robot is first discussed. The
constrained forces are expressed by an algebraic function of
states, input generalized forces, and constraint condition, and
then direct position / force controller without force sensor
is proposed based on the algebraic relation. To give the
grinding system the ability to adapt to any object shape being
changed by the grinding, we added estimating function of the
constraint condition in real time for the adaptive position / force
control. Evaluations through simulations by fitting the changing
constraint surface with spline functions, indicate that reliable
position / force control and shape-grinding can be achieved by
the proposed controller.

I. INTRODUCTION

Many researches have discussed on the force control of
robots for contacting tasks. Most force control strategies are
to use force sensors [1], where the reliability and accuracy
are limited since the work-sites of the robot are filled with
noise and thermal disturbances. Force sensors could lead to
the falling of the structure stiffness of manipulators, which is
one of the most essential defects for manipulators executing
grinding tasks. To solve these problems, some approaches
without any force sensor have been presented [2]. To ensure
the stabilities of the constrained motion, force and position
control have utilized Lyapunov’s stability analysis under the
inverse dynamic compensation. Their force control strategies
have been explained intelligibly in books [3]-[5].

However, insofar as we survey the controllers introduced
in the books or published papers are not based on the alge-
braic function of states and input generalized forces derived
from the relation between the constraint condition and the
equation of dynamics. So we discuss first a strategy for
simultaneous control of the position and force without any
force sensors, where the equation of dynamics in reference
to the constrained force has been reformulated. The con-
strained force is derived from the equation of dynamics and
the constrained equation is defined as an explicit algebraic
function of states and input generalized forces, which means
that force information can be obtained by calculation rather
than by force sensing. Eq. (1), which has been pointed out
by Hemami in the analysis of biped walking robot, denotes
also the kinematical algebraic relation of the controller, when
robot’s end-effecter being in touch with a surface in 3-D
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space:
F, =a(z1,22) — A(z1)T, (D

where, F), is the exerting force on the constrained surface. o
and xo are state variables. a(x,x2) and A(xy) are scalar
function and vector one defined in following section. 7 is
input torque. The above algebraic equation has been known
in robotic field. It had been applied the first time to the
sensing function of exerting force by Peng. As a new control
law, the controller doesn’t include any force feedback sensors
but realizes simultaneous control of position and force in the
constrained motions and is different from the traditional ones
[1].

A strategy to control force and position proposed in this
paper is also based on Eq. (1). Contrarily to Peng’s Method
to use Eq. (1) as a force sensor, we used the equation
for calculating T to achieve a desired exerting force F) 4.
Actually, the strategy is based on two facts of Eq. (1) that
have been ignored for a long time. The first fact is that the
force transmission process is an immediately process being
stated clearly by Eq. (1) providing that the manipulator’s
structure is rigid. Contrarily, the occurrence of velocity and
position is a time-consuming process. By using this algebraic
relation, it’s possible to control the exerting force to the
desired one without time lag. Another important fact is the
input generalized forces have some redundancy against the
constrained generalized forces in the constrained motion.
Based on the above analysis, we had confirmed our force /
position control method can realize the grinding task through
real grinding robot.

The problem to be solved in our approach is that the
mathematical expression of algebraic constraint condition
should be defined in the controller instead of the merit of not
using force sensor. Grinding task requires on-line estimation
of changing constraint condition since the grinding is the
action to change the constraint condition. In this presentation,
we estimate the object’s surface using the grinder as a touch
sensor. In order to give the system the ability to grind any
working object into any shape, we focus on how to update
the constraint condition in real time, obtaining the result
that spline function is best for on-line shape estimation.
Based on the above preparation we constructed a simulator
to evaluate the proposed shape-grinding system, resulting
in having proven the validity of our system to have the
performance to adapt for grinding to desired-shape without
force sensor.
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Fig. 1. A Grinding Robot

II. ANALYSIS OF GRINDING TASK

Generally speaking, the grinding power is related to the
metal removal rate(weight of metal being removed within
unit time), which is determined by the depth of cut, the width
of cut, the linear velocity of the grinding wheel, the feed rate
and so on. There are many empirical formulae available for
the determination of grinding power, and the desired force
trajectory can then be planned according to the power. The
normal grinding force F,, is exerted in the perpendicular
direction of the surface. It is a significant factor that affects
ground accuracy and surface roughness of workpiece. The
value of it is also related to the grinding power or directly
to the tangential grinding force as

Ft = KtFn7 (2)

where, K; is an empirical coefficient, F} is the tangential
grinding force.

The axial grinding force F is proportional with the feed
rate, and is much smaller than the former force.

Eq. (2) is based on the situation that position of the
grinding cutter is controlled like currently used machining
center. But when a robot is used for the grinding task,
the exerting force to the object and the position of the
grinding cutter should be controlled simultaneously. The F;,
is generally determined by the constrained situation, and it
is not suitable to apply Eq. (2) to grinding motion by the
robots.

III. MODELING

A. Constrained Dynamic Systems

Hemami and Wyman have addressed the issue of control
of a moving robot according to constraint condition and
examined the problem of the control of the biped locomotion
constrained in the frontal plane. Their purpose was to control
the position coordinates of the biped locomotion rather
than generalized forces of constrained dynamic equation
involved the item of generalized forces of constraints. And
the constrained force is used as a determining condition to
change the dynamic model from constrained motion to free
motion of the legs. In this paper, the grinding manipulator
shown in Fig. 1, whose end-point is in contact with the
constrained surface, is modelled according Eq. (3) with
Lagrangian equations of motion in term of the constraint

forces, refering to what Hemami and Arimoto have done:
d oL oL

Rt W At T g T
where, J. and J,. satisfy,
oC oC oC oC
Jc*(afq/HWH*EJr/HaTHa
> or T ~T, .
Jr*a*(f J.=J. 7/ | 7],

r is the [ position vector of the hand and can be expressed
as a kinematic equation ,

r=1r(q). 4)

L is the Lagrangian function, ¢ is (> 2) generalized
coordinates, 7 is [ inputs. The discussing robot system does
not have kinematical redundancy. C' is a scalar function of
the constraint, and is expressed as an equation of constraints

C(r(g) =0, )

F,, is the constrained force associated with C' and F; is the
tangential disturbance force.
Eq. (3) can be derived to be

M(q)g+H/(q,q4)+G(q)

=r+J (q)F,—J L (q)F,, (6)

where M is an [ x [ matrix, H and G are [ vectors.
The state variable x is constructed by adjoining g and gq:
x = (7, 23)"=(q",¢")". The state-space equation of the

system are
T = o,
&y = —M Y(H(x,z)+ G(x1))
+M T+ T ()P — Jr®)F), (D)
or in the compact form
z=F(x,7,F,,F), ®)

where the dimension of x is n = 2[. In order to control the
system( Eq.(8)) with constraints condition(Eq. (5)) , it can
be done firstly by differentiating the constraint Eq. (5) twice
with respect to time and rewriting the result in terms of x:

D(z)i =0, )

where, D(z) is a n vector considering that the constrained
motion of the system is orthogonal. Premultiplying Eq. (8)
by D(x) derived from Eq. (9),

D(z)F(z,7,F,,F,) =0. (10)

This is a linear equation about the unknown constrained force
F,, , combining the constrained equation and the equation of
motion.Eq. (10) can be uniquely solved for F;, as a function
of the state  and input T,

- a%(%)q]q +<%>M-1(H<q,q> +Glg)+J,7F)
oc. ac. ., ac ac
G = (GOMI GRS/ | G an
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Constrained Force Equation
Eq.(12)
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Constrained Dynamic Equation Eq.(13)

Fig. 2. Model of Constrained Dynamic System

because the value of (%)M’%%)T(: m,) is always
positive, hence it is also invertible. In this case, from Eq.
(11) F;, can be expressed as

Fn:Fn(w7T7Ft)7 (12)

or in a more detailed form
aoC M- oC T] 1 ”

=15 (8q) H

{—[%<Z%>q}q+<2%>M‘1(H(q,q>+G<q>+JrTFt>}
oc., . _,,0C p._4 -
lGM G H H {(aq) Y

£ a(ar, @2) + A1) JTF, — A(m), (13)

where, a(x1,x2) is a scalar representing the first term in
the expression of F),, and A(x;) is an [ vector to represent
the coefficient vector of 7 in the same expression. Eq. (8)
and Eq. (12) compose a constrained system that can be
controlled, if F,, = 0, describing the unconstrained motion
of the system.

Substituting Eq. (13) into Eq. (7), the state equation of the
system including the constrained force (as F,, > 0 ) can be
rewritten as

;] = o,

&y = —M '[H(mi,x2)+ G(m1) — JL (x1)a(z, @2)]

+M (I -

which is denoted as a model of the constrained dynamic
system in Fig. 2. Solutions of these dynamic equation always
satisfy the constrained condition Eq. (5).

JAT+(JTA-DITE] (14

B. Shape grinding

In the past, we did the experiment when working surface
was flat, so we can just do flat grinding. Now we want to
grind the work-piece into the one with different kinds of
shapes, for example, grinding the flat surface into a curved
one, just like Fig. 4. In Fig. 4, we can find that the desired
working surface is prescribed (it can be decided by us.),
which means the desired constrained condition C} is known,
S0

Ci=y— fa(x)=0 (15)

But the constrained condition C¥) (j = 1,2,---d — 1)
changed by the previous grinding which is in the Dynamic
System of Fig. 3 is hard to defined as an initial condition.
So we define

CO =y —fDz)=0 (16)
where, y is the y position of manipulator’s end-effector
in the coordinates w depicted in Fig. 4 and we assume
C™ is known, that is to say, f()(z) is initially defined.
f (j)(sc) is the working surface remained by i-th grinding.
And f(j)(;r) is a function passing through all points, (x1,
FO(21)), (@2, f9 (22)), -+, (2p, £9)(2)), these observed
points representing the (j)-th constraint condition obtained
from the grinding tip position since we proposed previously
the grinding tip used for the touching sensor of ground new
surface. Here we assume f (j)(x) could be represented by
a polynomial of (p — 1)-th order of z. Given the above p
points, we can easily decide the parameters of polynomial
function y = fU)(z). If the current constrained condition
can be got successfully, which means the current working
surface f()(x) can be detected correctly, the distance from
the current working surface to the desired working surface
which is expressed as Ah{) shown in Fig. 4 can be obtained
easily.

Ah(j)(mi) = f(j)(.r)| _ fd(m)|w=1 17)
In this case, we can obviously find that the desired con-
strained force should not be a constant. It should be changed
while Ah(j ) changes. So we redefine the desired constrained

force Fﬁfi) as a function of AhY), shown as follows:

T=x;

FY)(2:) = kAR (x;) (18)
where, k is a constant.

We can describe the grinding procedure as the removal
length in y direction is proportional to the exerting force
F(J (z), which is determined through Eq. (13) and Eq. (24),
then new-ground surface f (JH)( +) can be obtained through
exerted force ) (x;) and previous constraint fU)(z;) as

FUHD () —

F9 () = K'FD () (19)

link1

Eﬂj > &
work-piece desired working surface

Fig. 4. The model of shape grinding
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Constraint Condition Description

e
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Cilr()) = oL e L
M(q)q + H(q,d) + G(q) s T2
=7+ Il @k~ Th@R| PRI fres
CU)(r(q) = 0
CUD(r(q) = 0 FY)

Controller

Fig. 3.

where, k' is a constant. A condition that the new object shape
fUTD(2;) have to satisfy, i.e.,

y= f(j+1>(xi) (20)
Then CU*D can also be known:
CUH) — ¢ — U () =0 (1)

So, starting from C), all of C¥) can be decided. What we
want to emphasize is C; represents the resulted ground shape
of the object defined in the shape-grinding simulator.

IV. FORCE AND POSITION CONTROLLER
A. Controller using predicted constraint condition

Reviewing the dynamic equation(Eq. (3)) and constraint
condition(Eq. (5)), it can be found that as [ > 1, the
number of input generalized forces is more than that of the
constrained forces. From this point and Eq. (13) we can
claim that there is some redundancy of constrained force
between the input torque 7, and the constrained force Fi,.
This condition is much similar to the kinematical redundancy
of redundant manipulator. Based on the above argument and
assuming that, the parameters of the Eq. (13) are known
and its state variables could be measured, and a(x1,x2)
and A(x) could be calculated correctly, which means that
the constraint condition C' = 0 is prescribed. As a result, a
control law is derived and can be expressed as

+(I— At (1) A1)k, (22)

where I is a [ x [ identity matrix, F,q is the desired
constrained forces, A () is defined in Eq. (13) and AT (z;)
is the pseudoinverse matrix of it, a(x1,x2) is also defined
in Eq. (13) and k is an arbitrary vector which is defined as

~T

k—J, (q){K,,(rd )+ Kyl — 7%)},

where K, and K, are gain matrices for position and the
velocity control by the redundant degree of freedom of

(23)

Dynamic system

Shape-grinding position / force control system

A(xy), rq(q) is the desired position vector of the end-
effector along the constrained surface and 7(q) is the real
position vector of it. Eq. (23) describes the 2-link rigid
manipulator’s arm compliance, we have to set K, and K4
with a reasonable value, otherwise high-frequency response
of position error will appear. The controller presented by Eq.
(22) and Eq. (23) assumes that the constraint condition C' =
0 be known precisely even though the grinding operation is
a task to change the constraint condition. This looks like
to be a contradiction, so we need to observe time-varying
constraint conditions in real time by using grinding tip as a
touch sensor.

The time-varying condition is estimated as an approximate
constrained function by position of the manipulator hand,
which is based on the estimated constrained surface location.
The estimated condition is denoted by C = 0. Hence,
a(x1,x2) and A(z,) including AC/q and 8/8q(dC/dq)
are changed to a(x1,z2) and A(:cl) as shown in Eq. (25),
Eq. (26). They were used in the later simulations of the
unknown constrained condition. As a result, a controller
based on the estimated constrained condition is given as

= Az ){Fndf&(asl,wg)fA(:Bl)JEFt}

+I— AT () A(z))k, (24)

me 11 28 - [8<8C>q] +<2§)M1<h+g>}
2 a(xy, o) (25)
m O M 2 Ay o)

Figure 3 illustrates a control system constructed according
to the above control law that consists of a position feedback
control loop and a force feedfoward control. It can be found
from Eq. (13) and Eq. (24) that the constrained force always
equals to the desired one explicitly if the estimated constraint
condition equals to the real one, ie., C = C and F, =
0. This is based on the fact that force transmission is an
instant process. In the next section, we will introduce several
prediction methods which are used to get C; in current time.

946



The experiment when the constraint is known have been
done successfully in Fig. 5. The maximum position error is
about 8[mm], and the maximum force error is O[N]. Based
on the experiment when the constraint is known, we propose
the method when the constraint is unknown as follows.

Fig. 5. The experiment when the constraint is known

B. On-line Estimation of Constraint

As it is stated in former section, we had done the grinding
experiment when working surface was flat, and now curved
surface shape-grinding is proposed to be solved in our
research. But how to predict the unknown constraint surface
is the nodus and key point. Since constraint surface is
unknown, we concentrate our efforts on considering solutions
and comparing the effection, finally select a best solution
to accomplish this new experiment task. We proposed three
ways to estimate the unknown constraint surface, it is fitted
with linear function, quadratic function, and spline curve.
Three simulations have been done to base on different con-
straint conditions. Here, an unknown constrained condition
is estimated as following,

(Assumptions)

1. The end point position of the manipulator during perform-
ing the grinding task can be surely measured and updated.
2. The grinding task is defined in z — y plane.

3. When beginning to work, the initial condition of the end-
effector is known and it has touched the work object.

4. The chipped and changed constraint condition can be
approximated by connections of minute sections.

Three methods which are fitting by linear function,
quadratic function and spline function had been used to get
the online estimation of the unknown constrained condition.
Here we just introduce the spline curve fitting.

1) Fitting by quadratic spline curve: The unknown con-
strained condition, which is represented in Fig. 3, is esti-
mated and expressed as,

Cii=y—[Ai(x—a;i 1)’ +Bi(x—zi 1)+ Ci] (27

The end-effector position at time (i — 1)At, ¢At are denoted
respectively as (21, ¥i—1), (T4, ¥:)-
The quadratic spline curve denoted as
Sz(l') = Az(lL' — $i71)2 + Bz(iﬂ — x,;l) + Cz‘,
x € [ri1,2:)(i=1,2,3---n) (28)

The constrained condition C’i+1 =y — (Aj(z —2;1)* +
B;(x —x;_1)+ C;) can be determined. Also, we can get the
coefficients of the spline curve uniquely as follows.

Si(i-1) = Yi—

(Tim1,Yi-1

Tipr = 24, wi41]

Fig. 6. Fitting by quadratic spline curve

Firstly, let S;(x) satisfy the following conditions shown
in Fig. 6.
(A)Go through two ends of the interval

29
(30)

Yim1 = Si(xi-1)
Yi = Sz(xz)

(B)First-order differential of the spline polynomials are
equal at the end-point of adjoined function.

dSi_;,_l(.T)) dSZ(.Z‘) ’ ’
T dr oz, = Tdr z=ziSi+1(xi) =S, () (€2))
Inputting (28) into (29), (30) and (31), we can obtain:
Ci:yifly(i: 172,"'771) (32)
Bi+1 :2’1,1‘173“(2:1,2,,71*1) (33)
Ai:BH;T:Bi,(i:L2,-~-,n—1) (34)

Where, h; = x; — x;-1, u; = . From the above-
mentioned result, the constrained conditional expression
éi+1 can be updated step by step.

In this point, we can see that the spline curve is defined
by two points and a derivative at some point. Comparing
to the quadratic function fitting and linear function fitting,
fitting by quadratic spline curve can more precisely represent
the ground surface because derivative information at hand-
touching position, i.e., tangential direction of the surface is
being included in the spline representation. So we can say
method of “fitting by quadratic spline curve” is the best. It
will be verified by simulations later.

Yi—VYi—1
h.

V. SIMULATION

A planar two-link manipulator is applied for simulation so
as to examine the behaviour of the proposed controller. The
goals were to examine the feasibility of the proposed method
with regard to the accuracy and stability. Three simulations
have been done based on different constraint conditions.

The model of grinding robot manipulator used in the
simulation is shown in Fig.4, whose parameters are: length
of link 1 is 0.3[m], length of link 2 is 0.5[m], and the mass of
link 1 is 12.28[kg], the mass of link 2 is 7.64[kg]. The end-
effector velocity, 0.01[m/s], the desired constrained force,
Fq = 5[N], grinding resistance, F; = O[N].

The desired constrained surface is denoted as

f(x) = p — kcos(wz) (35)
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Fig. 7. The trajectory of simulation
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Fig. 8.

Error of x position

A. Shape Grinding-simulation

Since we have known that the spline curve fitting is the
best, we can use it to make the system adapt to the shape-
changing grinding represented in Fig. 4. In this simulation,
the constant k£ shown in Eq. (18) is 50, and k' shown
in Eq. (19) is 0.002. According to the real condition, we
changed the coefficient of desired constraint condition shown
in Eq. (35), which is p=0.50, £k=0.09, w=13. The trajectory
of simulation is showing Fig. 7. The trajectory named O — A
is the first grinding, and then go back to the starting point
through a line which is named A — B. The second grinding
trajectory is B — A. From the result, we can easily find that
the part between O— A and B— A are cut. Then do that again
and again, it can be close to the desired trajectory finally.

The x position and force errors are shown in Fig. 8, and
Fig. 9 respectively. From these figures, we can find the
general tendency of position and force error is decrescent.
And these errors are not only so tiny but also in the allowable
range.

Ah shown in Fig. 10 means that the perpendicular distance
from current position to desired position. After doing many
times, if Ah can be close to zero, it means the shape grinding
can be done very well. We show a combination of Ah each
time in Fig. 10, it means the change process of Ah. In this
simulation, we used a 9-th order polynomial, the terms of
highter order than 9-th degree is omitted. So it caused the
tiny error.

From Ah at the last time shown in Fig. 10, we can know
maximum of Ah at the last time is less than 0.01[m] after 18
times grinding. And as time passes, Ah can be more smaller
and less than 0.001[m] with about 50 times grinding.

Generally, although tiny errors exist, we can also say that
shape grinding can be done very well by this method.

92
BT
Time[s]

Fig. 9. Force Error

Fig. 10. The changes of Ah

VI. CONCLUSIONS

The constrained dynamic equations of a manipulator are
derived and the constrained forces are expressed as an ex-
plicit function of the state and inputs. The presented method-
ology allows computation of the forces, as an alternative
to sensing. Hence, the system is controlled with no force
sensor. The control law presented is constructed by using the
dynamical redundancy of constrained systems. The controller
designed with this control law can be used for simultaneous
control of force and position. In the paper, we present three
methods for estimating the constrained condition to attain
time-varying unknown constrained information. Simulation
results indicate that the method of “quadratic spline fitting for
unknown constrained surface” has the best estimation of the
real constrained surface. Hence we can say the performance
of controller with quadratic spline fitting is the best.

Moreover, the quadratic spline fitting for unknown con-
strained surface is used in the shape grinding. From the last
results, we can find that it can be done very well in the
shaping-grinding.
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