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In this paper, it proposes a dynamical robot model with multi-point elbow(Its modeling is realized
through the integration of constrained multi-point state and motion equation). The simulation result
shows that energy consumption when elbow is attached less than elbow is not attached.
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1 緒言
多関節マニピュレータはリンクの数が増えるほど自重
が増してしまい，制御する為にはより大きな力が必要と
なる．また，自重によって手先が下がってしまい，手先の
精度も悪くなる．そこで，人間が肘をつくことによって
少ない力で正確に作業を行えることを考え、同様に多関
節マニピュレータにも同じことが言えるであろうと考え
る。本研究では、多点肘つきロボットの動力学モデル (多
点拘束状態と運動方程式の統合によりモデル化を実現)を
提案し、このモデルを使用して、肘をついたほうが肘を
つかない時より少ない消費エネルギーで正確に作業が行
えることをシミュレーションにより示す。

2 拘束運動

2.1 ハンド拘束運動

ここでは次節で述べる肘つき拘束運動の説明の準備の
ため，剛体リンクからなる sリンクマニピュレータの位
置/力制御について考え，拘束面に接触しつつリンク先端
のハンドで接触作業を行うロボットについて考える．た
だし，ここでは接点での摩擦力は無視できるものとする．
Lをラグラジアン，q ∈ Rs を一般化座標，τ ∈ Rs を一
般化入力，また uをラグランジュの未定定数，ftを摩擦
力とするハンド拘束状態のラグランジュの方程式は，

d

dt
(
∂L

∂q̇
) − (

∂L

∂q
) = τ + (

∂C

∂qT
)T u − (

∂r

∂qT
)T ṙ

‖ṙ‖
ft (1)

と表される．ここで,手先の位置・姿勢ベクトル r ∈ Rs

と超曲面を表すスカラー関数の拘束条件 C は，順運動学
関係式より,

r = r(q) (2)
C(r(q)) = 0 (3)

と表される．ここで拘束されるハンドは作業座標系の中
で非拘束方向に運動できる自由度が残されていることか
ら s > 1である．ハンドに作用する拘束力 fn で表すと
き，uと fn の関係は,

u = fn/‖ ∂C

∂rT
‖ (4)

となる．ここで ‖● ‖はベクトル●のユークリッドノル
ムを表す．拘束力 fnが作用するマニピュレータの運動方

程式は，式 (1)と式 (4)，そして関節の粘性摩擦により，

M(q)q̈ + H(q, q̇) + g(q) + Dq̇

= τ + {( ∂C

∂qT
)T /‖ ∂C

∂rT
‖}fn − (

∂r

∂qT
)T ṙ

‖ṙ‖
ft (5)

が導かれる [1]．M は s × sの慣性行列，H と Gはコ
リオリ力・遠心力と重力の影響を表す s × 1の縦ベクト
ル，D は関節の粘性摩擦係数を表す s × s の対角行列
D = diag[D1, D2, · · · , Ds]である．また，本研究では一
般化座標 q は関節角度，一般化入力 τ は入力トルクを
表す．

2.2 肘つき拘束運動

sリンクマニピュレータの中間リンクが p個の拘束

Ci(ri(q)) = 0 (i = 1, 2,…, p) (6)

を受けているときの運動方程式について考える．ここで
ri は拘束を受けている第 iリンクの位置/姿勢を表す運
動学方程式であり，式 (2)と同様,

ri = ri(q) (7)

である．
式 (5)は，ハンド拘束運動を表している．拘束条件が
複数存在する場合には，式 (5)の右辺第 2項の拘束力の
係数ベクトルと右辺第 3項の摩擦力の係数ベクトルはそ
れぞれ，

(
∂Ci

∂qT
)T /‖ ∂Ci

∂rT
‖ = jc

T
i (8)

(
∂ri

∂qT
)T ṙi

‖ṙi‖
= jt

T
i (9)

の s × 1の縦ベクトルとなる．さらに，

Jc
T = [jc

T
1 , jc

T
2 , · · · , jc

T
p ] (10)

Jt
T = [jt

T
1 , jt

T
2 , · · · , jt

T
p ] (11)

fn = [fn1, fn2, · · · , fnp]T (12)
ft = [ft1, ft2, · · · , ftp]T (13)

と定義する．Jc
T ,Jt

T は s×p行列であり，fn,ftは p×1
の縦ベクトルである．これらを考慮すると，p個の点で
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中間リンクが拘束されているマニピュレータの運動方程
式は，

M(q)q̈ + H(q, q̇) + g(q) + Dq̇

= τ +
p∑

i=1

(jc
T
i fni) −

p∑

i=1

(jt
T
i fti)

= τ + Jc
T fn − Jt

T ft (14)

となる．また，式 (6)を時間 tで 2回微分し，q̈の拘束条
件を求めると，

[
∂

∂q
(
∂Ci

∂qT
)q̇

]
q̇ + (

∂Ci

∂qT
)q̈ = 0 (15)

が得られる．マニピュレータが常に拘束面に拘束される
ためには，式 (14)の解 q(t)が時間 tに無関係に式 (6)を
満たさなければならない．式 (6)の時間微分によって得
られた式 (15)を満たす q̈と式 (14)の q̈が同じ値をとる
とき，式 (14)の q(t)は式 (6)を満たすことになる．

2.3 モータを含めたロボットダイナミクス

本研究では，マニピュレータの関節を動かすのに使用
するモータを直流サーボモータの等価な電子回路とする．
ここで，モータの端子電圧 vi,抵抗 Ri,インダクタンス
Li,回路を流れる電流 ii,モータの角変位 θi,発生トルク
τgi,負荷トルク τLi,逆起電力 vgi,モータの慣性モーメン
ト Imi,逆起電力定数KEi,トルク定数KTi，減速機の粘
性摩擦係数 dmiとする．このときモータについて次の関
係式が成り立つ [2]．

電圧方程式 : vi(t) = Lii̇i + Riii(t) + vgi(t) (16)

逆起電力 : vgi(t) = KEiθ̇i(t) (17)

運動方程式 : Imiθ̈i = τgi(t) − τLi(t) − dmiθ̇i (18)
発生トルク : τg(t) = KTiii(t) (19)

ただし，磁界と各定数との関係から直流モータでは，
KTi = KEi(= K)であることが知られている．
ここで，式 (17)を式 (16)に，式 (19)を式 (18)にそれ

ぞれ代入すると，

vi = Lii̇i + Riii + Kiθ̇i (20)
Imiθ̈i = Kiii − τLi − dmiθ̇i (21)

となる．また，モータを減速比が kiの歯車列を介してマ
ニピュレータに取り付けた場合，

θi = kiqi (22)

τLi =
τi

ki
(23)

となり，式 (20),式 (21)を i̇i と τi の式にすると，

Lii̇i = vi − Riii − Kikiq̇i (24)
τi = −Imik

2
i q̈i + Kikiii − dmik

2
i q̇i (25)

となる．式 (24),式 (25)をベクトル，行列で表記する場合，

Li̇ = v − Ri − Kmq̇ (26)
τ = −Jmq̈ + Kmi − Dmq̇ (27)

と置く．ここに，

v = [v1, v2, · · · , vs]T

i = [i1, i2, · · · , is]T

であり，また，

L = diag[L1, L2, · · · , Ls]
R = diag[R1, R2, · · · , Rs]

Km = diag[Km1,Km2, · · · ,Kms]
Jm = diag[Jm1, Jm2, · · · , Jms]
Dm = diag[Dm1, Dm2, · · · , Dms]
Kmi = Kiki, Jmi = Imik

2
i , Dmi = dmik

2
i

と定義し，すべて正の要素を持つ．

式 (27)を式 (14)に代入して整理すると，

(M(q) + Jm)q̈ + H(q, q̇) + g(q) + (D + Dm)q̇
= Kmi + Jc

T fn − Jt
T ft (28)

となる．(14)と式 (15)の関係と同様に，式 (15)を満た
す q̈と式 (28)の q̈が同じ値をとるとき，式 (28)の q(t)
は式 (6)を満たすことになる．

2.4 複数拘束条件付，ロボット/モータの連立
方程式

式 (28)と式 (15)の q̈が同じ値をとるため，拘束力 fn

は従属的に決定される．この関係を陽に表すため，式 (28)，
式 (15)を，

(M + Jm)q̈ − Jc
T fn

= Kmi − H − g − (D + Dm)q̇ − Jt
T ft (29)

(
∂Ci

∂qT
)q̈ = −

[
∂

∂q
(
∂Ci

∂q
)q̇

]
q̇

= −q̇T

[
∂

∂q
(
∂Ci

∂qT
)
]
q̇ (30)

と変形する．式 (30)の左辺の ∂Ci/∂qT は 1×sの横ベク

トルであり，右辺の q̇T

[
(∂/∂q)(∂Ci/∂qT )

]
q̇は 1×1のス

カラーである．式 (29)，式 (30)，式 (24)を合わせて以下の
様な式に表す．ただし，摩擦力 jt

T
i fti = 0(i = 1, 2, · · · , p)
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とする．



M + Jm −jc
T
1 · · · −jc

T
p 0 · · · 0

∂C1
∂qT 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

∂Cp

∂qT 0 · · · 0 0 · · · 0

0 0 · · · 0 L1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · Ls







q̈

fn1

...
fnp

i̇1
...

i̇s




=




Kmi − H − g − (D + Dm)q̇

−q̇T

[
∂

∂q ( ∂C1
∂qT )

]
q̇

...

−q̇T

[
∂

∂q ( ∂Cp

∂qT )
]
q̇

v1 − R1i1 − Km1q̇1

...
vi − Rsis − Kmlq̇s




(31)

慣性項 (M + Jm)が s× s行列，拘束力の係数ベクトル
jc

T
i が s × 1の縦ベクトル，∂Ci/∂qT が 1 × sの横ベク
トル，インダクタンス Lが s × sの対角行列であること
より，式 (31)の左辺第 1項の行列は (2s + p) × (2s + p)
行列である．
式 (31)は式 (10)，式 (12)，(26)の定義を用いると次

のように表される．



M + Jm −Jc
T 0

∂C
∂qT 0 0

0 0 L







q̈

fn

i̇




=




Kmi − H − g − (D + Dm)q̇

−q̇T

[
∂

∂q ( ∂C
∂qT )

]
q̇

v − Ri − Kmq̇


 (32)

ただし，

C = [C1, C2, · · · , Cp]T (33)

の p × s行列である．さらに，

M∗ =




M + Jm −Jc
T 0

∂C
∂qT 0 0

0 0 L


 (34)

b =




Kmi − H − G − (D + Dm)q̇

−q̇T

[
∂

∂q ( ∂C
∂qT )

]
q̇

v − Ri − Kmq̇


 (35)

とおくと，式 (32)は，

M∗




q̈

fn

i̇


 = b (36)

と表される．式 (36)を未知である q̈，fn，i̇の式にすると，



q̈

fn

i̇


 = M∗−1

b (37)

となり，未知である q̈，fn，i̇を同時に求めることがで
きる．ただし，上式が成り立つためにはM∗が正則行列
でなければならない．次節によりM∗ の正則性を確認
する．

3 M ∗の正則性と逆行列算出法

3.1 M ∗の正則性

M∗ が正則行列であることを確認する．

まず，

[
A11 A12

A21 A22

]
の行列を考える．一般に全体の行

列が正則でかつ部分行列A11が正則であるとき，全体の
ブロック行列の行列式は以下のようになる．

det

[
A11 A12

A21 A22

]
= detA11・det(A22 − A21A

−1
11 A12)

(38)

式 (38) を用いて，M∗ について考える．M∗ の左上の
(s + 1) × (s + 1)のブロック行列M1 は，

[
M0 −jc

T
1

∂C1
∂qT 0

]
4
= M1 (39)

(M0 = M + Jm)

と表され，行列式を求めると，M > 0と式 (8)の jc
T
i の

定義より，

detM1 = detM · det{∂C1

∂qT
M−1jc

T
1 }

=
1

‖ ∂C1
∂rT ‖

detM · det{∂C1

∂qT
M−1(

∂C1

∂qT
)T } (40)

と 表 さ れ る ．C1 が 独 立 な 拘 束 条 件 で あ り，
M−1 が 正 定 な 正 則 行 列 で あ る こ と よ り，
{(∂C1/∂qT )M−1(∂C1/∂qT )T } は q に拘わらず常
に正のスカラー値であるので，M1は正則であることが
分かる．
同様に式 (31)よりM2 を定義する．
[

M1 −jc
T
2

∂C2
∂qT 0

]
4
= M2 (41)

式 (41)の行列式を求めると,先程と同様に，M1 は正則
行列であることと式 (8)の jc

T
i の定義より，

detM2 = detM1 · det{∂C2

∂qT
M−1

1 jc
T
2 }

=
1

‖ ∂C2
∂rT ‖

detM1 · det{∂C2

∂qT
M−1

1 (
∂C2

∂qT
)T } (42)

と表される．上記の議論と同様にして，M2が正則であ
ることがわかる．以上のことを繰り返すことによって，
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M1,M2,· · · ,Mp−1 が正則な行列であることが分かる．
よって，

[
Mp−1 −jc

T
p

∂Cp

∂qT 0

]
= Mp (43)

も正則行列である．さらに |Mp| 6= 0，|L| 6= 0より，
[

Mp 0
0 L

]
= M∗ (44)

も正則行列であり，式 (44)がM∗ と等しいことは，式
(31)の左辺と式 (34)のM∗ を参考にすることで明らか
である．以上より，M∗ は正則行列であることが確認で
きる．

3.2 M ∗−1

の算出方法

正則なブロック行列が

[
A11 A12

A21 A22

]
で与えられてい

るとき，その逆行列はその部分行列A11が正則であると
き以下のように求められる．

[
A11 A12

A21 A22

]−1

=

[
A−1

11 + A−1
11 A12(A22 − A21A

−1
11 A12)−1A21A

−1
11

−(A22 − A21A
−1
11 A12)−1A21A

−1
11

−A−1
11 A12(A22 − A21A

−1
11 A12)−1

(A22 − A21A
−1
11 A12)−1

]
(45)

式 (45)よりM∗−1
は，

M∗ =

[
Mp 0

0 L

]−1

=

[
M−1

p 0

0 L−1

]
(46)

となり，M−1
p は，

Mp
−1 =

[
M−1 − M−1Jc

T ( ∂C
∂qT M−1Jc

T )−1 ∂C
∂qT M−1

( ∂C
∂qT M−1Jc

T )−1 ∂C
∂qT M−1

−M−1Jc
T ( ∂C

∂qT M−1Jc
T )−1

( ∂C
∂qT M−1Jc

T )−1

]

=


M−1{E − Jc

T M̃
−1

‖ ∂C
∂rT ‖ ∂C

∂qT M−1}

M̃
−1

‖ ∂C
∂rT ‖ ∂C

∂qT M−1}

M̃
−1

‖ ∂C
∂rT ‖M−1Jc

T

M̃
−1

‖ ∂C
∂rT ‖

]
(47)

と求めることができる．ただし，

(
∂C

∂qT
)M−1(

∂C

∂qT
)T 4

= M̃ (48)

である．

4 順動力学の解法
式 (5)の運動方程式を陽に求めることは困難である．特
に本研究では肘をつくことによってハンドを遠くまで伸
ばし，作業範囲を広げる冗長マニピュレータを想定して
いるため，式 (14)や式 (28)の運動方程式を求めること
になる．
このような多リンクマニピュレータの運動方程式を解
析的に求めることはとても難しく，不可能と考えてもよ
い．従って，ニュートン・オイラー法を利用して，解析的
に求めることの難しい運動方程式 (5)，式 (14)，式 (28)
を数値的に簡単に解くことができる方法がすでに提案さ
れている [3][4]．
まず，式 (28)を次のように置く．

MJ q̈ + BJ = τ̃ (49)

ただし，

MJ = M(q) + Jm

bJ = H(q, q̇) + g(q) + (D + Dm)q̇
τ̃ = Kmi + Jc

T fn − Jt
T ft

である．式 (49)の運動方程式をニュートン・オイラー法
により，正順計算を根元のリンクから各リンクごとにハ
ンドまで行い，逆順計算を逆方向におこなうことにより，

τ̃i = izT
i

ini + Jmiq̈i + (Di + Dmi)q̇i (50)

と求めることができる．式 (49)の運動方程式は式 (50)よ
り τ̃ = [τ̃1, τ̃2,…, τ̃n]T と求めることができる．
次に q̈を求めるのに必要な s × s行列MJ と s × 1の
縦ベクトル bJ を計算する．この計算に上で示したニュー
トン・オイラー法を利用する．まず τ̃ = INV [q, q̇, q̈, g]
と置くと式 (49)は，

MJ q̈ + bJ = INV [q, q̇, q̈, g] (51)

と置くことができる．式 (51)に q̈ = 0を代入すると，

bJ = INV [q, q̇,0, g] (52)

となり，bJ が求まる．次に，式 (51)に g = 0, q̇ = 0, q̈ =
ei(i = 1, 2,…, s)を代入すると，

mi = MJei = INV [q,0, ei,0] (53)

となる．miは慣性行列M の第 i列の成分であり，eiは
第 i行目が 1で，他は全て 0の l× 1行列であるので，式
(53)よりMJ = [m1,m2,…,ml]が求まる．

5 軌道追従のシミュレーション
以上の内容を用いて円軌道追従のシミュレーションを
行い，肘をついた場合とつかない場合とを比較する．ま
た，コントローラーは以下のような PD制御の電圧入力
とする．

v = Kp(qd − q) + Kd(q̇d − q̇) (54)

Kpは比例ゲインを表す s× sの対角行列，Kdは速度ゲ
インを表す s× sの対角行列であり，qd，q̇dはそれぞれ
目標の関節角度，関節角速度である．
シミュレーションの設定条件として，10 リンクマニ
ピュレータを用い，1リンク目のみ z軸回転を行い，他の
2～10 リンク目は y 軸回転を行う．質量 mi = 0.1[kg]，

4



リンク長 l1 = 0[m], lj = 0.3[m]，円柱リンクの半径
ri = 0.01[m]，比例ゲイン Kpi = 500，速度ゲイン
Kdi = 20，関節の粘性摩擦係数 Di = 0.5，逆起電力
定数，トルク定数 Ki = 0.203，抵抗 Ri = 1.1[Ω] イン
ダクタンス Li = 0.0017[H]，モータの慣性モーメント
Imi = 0.000164，減速比 ki = 3.0，減速機の粘性摩擦係
数 dmi = 0.01，摩擦力 fti = 0 とし，各関節の初期状
態を，q1(0) = 0, q2(0) = 0.25π, q3(0) = 0.5π, q4(0) =
−0.5π, q5(0) = 0.25π, q6(0) = 0.25π, q7(0) =
−0.5π, q8(0) = 0.25π, q9(0) = −0.25π, q10(0) =
0.25π [rad]，q̇i = 0[rad/s] とする．初期状態のマニピ
ュレータの簡易図を Fig.1に示す．また，目標軌道には
qd2(t) = 0.25π, qd3(t) = 0.5π, qd4(0) = −0.5π, qd5(0) =
0.25π, qd6(0) = 0.25π, qd7(0) = −0.5π, qd8(0) =
0.25π[rad]を固定とし，座標 (x, y, z) = (1.5, 1.5, 0.4)を中
心とした半径 0.1[m]の円を手先が反時計回りに回転する
円軌道を与える．また，シミュレーションは，�第 4関節と
第 7関節が拘束されている 2点肘つきの運動，�第 4関節
のみが拘束されている１点肘つきの運動，�肘をつかない
運動の 3通りを行う．拘束条件は，C(r3) = 0, C(r6) = 0
であり，具体的には z3 = z6 = 0である．この３通りの
円軌道追従のシミュレーションの結果をFig.2～Fig.12に
示す．

Fig.2,Fig.3,Fig.4 はそれぞれ xy 座標平面上の 2 点肘
つき，1点肘つき，肘なしの手先の軌道であり，同様に
Fig.5,Fig.6,Fig.7は xz座標平面上の 2点肘つき，1点肘
つき，肘なしの手先の軌道，Fig.9,Fig.10,Fig.11は yz座
標平面上の 2点肘つき，1点肘つき，肘なしの手先の軌
道であり，これらは時間 t = 0～5[s]間の軌道である．ま
た，Fig.8は時間 tまでにマニピュレータの全リンクがし
た仕事の合計であり，Fig.12は時間 tまでに全モータが
消費した電力量の合計である．また,Fig.8，Fig.12を各リ
ンク毎の仕事，電力量に分けたグラフを Fig.13～Fig.32
に示す．

6 結言
Fig.2～Fig.12より，多く肘をついた方がつかないより
も正確に円軌道を追従できていることが分かる．特に，重
力の働く z 軸方向には，肘をつかない運動は肘が下がっ
てしまう影響で手先も下がってしまい、うまく手先追従
ができていない．また，Fig.8，Fig.12より，たとえマニ
ピュレータのする仕事が同じでも，消費電力量で肘をつ
かない運動の方が大きくなってしまう。これは Fig.13～
Fig.32より，肘をつく前のリンクになるほど消費電力量
の差は大きくなる．以上より，肘をついた運動のほうが，
肘をつかない運動よりも少ない力，少ない消費エネルギー
で正確に作業が行えることが分かる．
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Fig. 1: Initial configuration of manipulator
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Fig. 2: Hand trajectory on x-y plane (with two-points
contacting)
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Fig. 3: Hand trajectory on x-y plane (with one-point
contacting)
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Fig. 4: Hand trajectory on x-y plane (with no-point
contacting)
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Fig. 5: Hand trajectory on x-z plane (with two-points
contacting)
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Fig. 6: Hand trajectory on x-z plane (with one-point
contacting)
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Fig. 7: Hand trajectory on x-z plane (with no-point
contacting)
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Fig. 8: Work summation of all links
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Fig. 9: Hand trajectory on y-z plane (two-points con-
tacting)
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Fig. 10: Hand trajectory on y-z plane (one-point con-
tacting)
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Fig. 11: Hand trajectory on y-z plane (no-point con-
tacting)
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Fig. 12: Electric energy summation of all links
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Fig. 13: Link work of the 1-st link
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Fig. 14: Link work of the 2-nd link
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Fig. 15: Link work of the 3-rd link
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Fig. 16: Link work of the 4-th link
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Fig. 17: Link work of the 5-th link
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Fig. 18: Link work of the 6-th link
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Fig. 19: Link work of the 7-th link
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Fig. 20: Link work of the 8-th link
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Fig. 21: Link work of the 9-th link
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Fig. 22: Link work of the 10-th link7
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Fig. 23: Electric energy of the 1-st link
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Fig. 24: Electric energy of the 2-nd link
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Fig. 25: Electric energy of the 3-rd link
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Fig. 26: Electric energy of the 4-th link
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Fig. 27: Electric energy of the 5-th link
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Fig. 28: Electric energy of the 6-th link
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Fig. 29: Electric energy of the 7-th link
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Fig. 30: Electric energy of the 8-th link
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Fig. 31: Electric energy of the 9-th link
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Fig. 32: Electric energy of the 10-th link8


