
SICE Annual Conference 2007
Sept. 17-20, 2007, Kagawa University, Japan

On-line Stable Evolutionary Recognition by Quaternion Motion-Feedforward
Compensation

Wei Song1, Mamoru Minami1, Yasushi Mae1 and Seiji Aoyagi2

1Graduate school of Engineering, University of Fukui, Fukui, Japan
(Tel : +81-776-27-8527;Email: {songwei,minami,mae}@rc.his.fukui-u.ac.jp)

2Faculty of Engineering, Kansai University, Kansaio, Japan
( E-mail: aoyagi@iecs.kansai-u.ac.jp)

Abstract: This paper presents a pose measurement method of a 3D object. The proposed method utilizes an evolutionary
search technique of a genetic algorithm (GA) and a fitness evaluation based on a matching stereo model whose pose is
expressed by unit quaternion. To improve the dynamics of recognition, a motion-feedforward compensation method is
proposed for the hand-eye system. The effectiveness of the proposed method is confirmed by simulation experiments.
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1. INTRODUCTION

In recent years, object recognition, visual tracking and
servoing using a stereo camera system have been studied
intensively in the field of robotics and in other research
areas. For a robot to be much smarter than just a mechan-
ical device, vision is required so that it can adapt itself to
a changing working environment and recognize objects
that exist in its surroundings. Tasks in which visual infor-
mation are used to direct the end-effector of a manipula-
tor toward a target object are referred to visual servoing.
This field is the fusion of many areas, such as kinematics,
dynamics, image recognition, and control theory. This
paper deals with problems of the real-time 3D pose (both
position and orientation) measurement of a target.

Since a visual servoing system incorporates the vision
sensor in the feedback loop, a changing of the sensing
unit will cause direct influence to the output motion of
the robot manipulator. So it is important to improve the
dynamics of the sensing unit which may cause the feed-
back system unstable. Here, we define the recognition
dynamics as a phenomenon that the sensed variables (the
3D pose of the target object) can be detected with time de-
lay because sensing mechanism generally be governed by
differential equations in time domain. Recently, several
researches deal with the problem of recognition dynam-
ics. Hashimoto and Kimura [1] propose a nonlinear con-
troller and a nonlinear observer for the visual servo sys-
tem to estimate the object velocity and predict the object
motion. Theoretically, prediction without error can be
obtained when time is infinity using nonlinear observer.
However, the initial error exists and it is possible to cause
the visual servoing system unstable. The same method
is also used by Luca [2] to estimate the distance between
the object to the camera. However, prediction makes no
effort at the beginning of the estimation. And the con-
vergence to the true value is obtained during the motion
of the camera, that is, the method does not work if the
camera is static. As we know, there is a big difference
between the sampling rate of the camera 33[ms] and that
of the joint controller 1[ms], which also cause the time

delay of the sensing unit. Nakabou and Ishigawa [3] use
a vision chip whose sampling rate is about 1[ms] to per-
form high-speed image processing. It has been shown
that high-speed moving object can be tracked by using vi-
sion chip without any prediction or compensation. How-
ever, such a high-speed vision chip system is so expensive
that can not be applied popularly.

In this paper, we proposed a motion-feedforward
method to improve the recognition dynamics of a hand-
eye robot system that has two cameras mounted on the
end-effctor. Since the cameras are mounted on the robot
end-effector, it is important for the robot to distinguish
what is the real motion of the target object and what is a
fictional motion just coming from the cameras. Motion-
feedforward method is to predict the target’s 3D pose
based on the motion of the end-effector to compensate the
target’s fictional motion coming from the cameras. When
the fictional motions are compensated during recognizing
the target object using hand-eye cameras, it seems that
the recognition is performed by using just fixed cameras,
so the recognition will become easier and the recognition
dynamics will be improved. Contrast to the nonlinear ob-
server method, the proposed motion-feedforward method
can give effective prediction as soon as the camera starts
to move. So the stability of visual servo system can be
guaranteed from the beginning.

Here, we use model-based method to deal with prob-
lems of the real-time 3D pose measurement. Unit quater-
nion is used to represent the orientation of the target ob-
ject, which has a advantage that can represent the orien-
tation of a rigid body without singularities. Solid models
are defined to search the target object in the image and
their orientations are also represented by unit quaternion.
The matching degree of the model to the target can be es-
timated by a fitness function, whose maximum value rep-
resents the best matching and can be solved by GA. An
advantage of our method is that we use a 3D solid model
which enables it possesses six-DOF. In other methods
like feature-based recognition, the pose of the target ob-
ject should be determined by a set of image points, which



makes it need a very strict camera calibration. Moreover,
searching the corresponding points in Stereo-vision cam-
era images is also complicated and time consuming, e.g.,
[4]. There is another approach of 3D pose measurement,
named appearance-based method, e.g. [5]. The image is
compared with various templates, which are made based
on the object in different views beforehand, resulting in
wasting time to recognize.

The GA-based scene recognition method described
here can be designated as an “evolutionary recognition
method”, since for every step of the GA’s evolution, it
struggles to perform the recognition of a target in the in-
put images. To recognize a target input by CCD camera
in Real-Time, and to avoid time lag waiting for the con-
vergence to a target, we used GA in such manner that
only one generation is processed to a newly input image,
which we called “1-Step GA” [8]. In this way, the GA
searching process and the convergence to the target is not
completed in one image but the recognition is achieved
by the sequence of the input images, where the GA con-
verges on the target in the continuously input images.

2. QUATERNION REPRESENTATION OF
3D POSE

In this paper, unit quaternion is used to represent the
orientation of the target object, which has a advantage
that can represent the orientation of a rigid body with-
out singularities (singularities exist in other orientation
representations, like three Euler angles, angle/axis rep-
resentation, et al.). Recently, unit quaternion has been
successfully used for attitude control of rigid bodies [6]
and control of robot manipulator [7].

The unit quaternion, viz. Euler pparameters, defined
as

Q = {η, ϵ}, (1)

If an object is rotated by an angle θ around an axis k by
angle/axis representation, then the orientation defined by
quaternion is where

η = cos
θ

2
, ϵ = sin

θ

2
k. (2)

η is called the scalar part of the quaternion while ϵ is
called the vector part of the quaternion. They are con-
strained by

η2 + ϵT ϵ = 1 (3)

hence the name unit quaternion. It is worth remarking
that, differently from the angle/axis representation, a ro-
tation by an angle −θ about an axis −k gives the same
quaternion as that assosiated with a rotation by θ about k
which solves the nonuniqueness problem. Also, no sin-
gularity occurs.

The rotation matrix corresponding to a given quater-
nion is

R(η, ϵ) = (η2 − ϵT ϵ)I + 2ϵϵT + 2ηS(ϵ) (4)
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Fig. 1 Hand-eye coordinate system

On the other hand, the quaternion corresponding to a
given rotation matrix R is

η =
1
2

√
1 + R11 + R22 + R33 (5)

ϵ =
1
4

 R32 − R23

R13 − R31

R21 − R12

 (6)

The relations between the time derivative of the Euler pa-
rameters and the body angular velocity ω is established
by the so-called propagation rule:

η̇ = −1
2
ϵT ω (7)

ϵ̇ =
1
2
(ηI − S(ϵ))ω (8)

With reference to the problem of describing mutual
orientation between two frames, the quantity

Q21 = {η21, ϵ21}, (9)

denotes the quaternion that can be extracted directly from
1R2.

The composition in terms of quaternions correspond-
ing to R2 = R1

1R2 is defined by the operator “∗” as

Q2 = Q1 ∗ Q21, (10)

with

η2 = η1η21 − ϵT
1 ϵ21, (11)

ϵ2 = η1ϵ21 + η21ϵ1 + S(ϵ1)ϵ21, (12)

Note that in Eq. (10) Q1 and Q2 are the quaternions that
can be extracted from R1 and R2, respectively, with Q21

as in Eq. (9).
Here, the target pose based on ΣCR is defined by unit

quaternion, as CRQM = {CRηM ,CR ϵM}. Since CRηM

can be determined by only CRϵM (Eq. (3)), we use only
three parameters CRϵM to express the target’s orienta-
tion. So the position/orientation of the target can be ex-
pressed by a six-parameter representation

CRψM =
[

CRrCR,M
CRϵM

]
, (13)

where CRrCR,M = [tx, ty, tz]T , CRϵM = [ϵ1, ϵ2, ϵ3]T .
The target’s position/orientation volecity is defined as

CRψ̇M =
[

CRṙCR,M
CRϵ̇M

]
. (14)



3. MOTION-FEEDFORWARD
COMPENSATION

First, we establish relations among relative velocities
of three moving frames, world coordinate system ΣW ,
target coordinate system ΣM and camera coordinate sys-
tems as ΣCR, shown in Fig. 1. Take ΣW as the reference
frame. Denote the vector from OW (the origin of ΣW ) to
OCR expressed in ΣW as W rCR, the vector from OW to
OM expressed in ΣW as W rM , and the vector from ΣCR

to ΣM expressed in ΣCR as CRrCR,M . We define the
robot’s end-effector coordinate system as ΣH , which is
considered the same as ΣCR since the camera is mounted
on the robot’s end-effector, so the rotation matrix W RCR

is a function of the joint vector q. The following relations
hold:

CRrCR,M = CRRW (q)(W rM −W rCR(q)). (15)

Differentiating Eq. (15) with respect to time

CRṙCR,M = CRRW (q)(W ṙM−W ṙCR)+S(CRωW )
CRRW (q)(W rM −W rCR(q)). (16)

where S(·) is the operator performing the cross product
between two (3 × 1) vectors. Given ω = [ωx, ωy, ωz]T ,
S(ω) takes on the form

S(ω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (17)

Similarly, the angular velocities of ΣCR and ΣM with
respect to ΣW , are W ωCR and W ωM , and the angular
velocity of ΣM with respect to ΣCR is CRωCR,M . Then
the following relations hold:

CRωCR,M = CRRW (q)(W ωM −W ωCR). (18)

The relation between the time derivative of CRϵM and
the body angular velocity CRωCR,M is given by

CRϵ̇M =
1
2
(CRηMI − S(CRϵM ))CRωCR,M ,(19)

CRωCR,M is given by Eq. (18).
Moreover, the camera velocity, which is considered as

the end-effector velocity, can be expressed using the Ja-
cobian matrix J(q) = [Jp

T (q), Jo
T (q)]T ,

W ṙCR = Jp(q)q̇, (20)

W ωCR = Jo(q)q̇, (21)

S(CRωW ) = −CRRW (q)S(Jo(q)q̇)W RCR(q). (22)

Substituting Eq. (20), Eq. (21), Eq. (22) to Eq. (16),
Eq. (19), the target velocity CRψ̇CR,M can be described
by a mathematical formulation using a × b = −b × a,
that is, S(a)b = −S(b)a:

CRψ̇CR,M =
[

CRṙCR,M
CRϵ̇M

]
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Fig. 2 Coordinate systems

Fig. 3 Solid model searching for a block

=

−CRRW (q)Jp(q) + CRRW (q)
S(W RCR(q)CRrCR,M )Jo(q)

− 1
2 (CRηMI − S(CRϵM ))CRRW (q)Jo(q)

 q̇

+
[

CRRW (q) 0
0 CRRW (q)

] [
W ṙM
W ϵ̇M

]

= Jm(q)q̇ + Jn(q)W ψ̇M . (23)

The relationship Jn(q) given by Eq. (23) describes
how target pose change in ΣCR with respect to the pose
changing of itself in real word. The relationship Jm(q)
given by Eq. (23) describes how target pose change in
ΣCR with respect to changing manipulator pose which
influences the recognition from the relative motion of the
camera to the object.

In this paper, we do not deal with the prediction of
the target’s motion in the real world, and we take account
of the prediction of the target velocity in ΣCR based on
the joint velocity of manipulator q̇, so we can rewrite Eq.
(23) as

CRψ̇CR,M = Jm(q)q̇. (24)

Then the 3D pose of the target in time t + ∆t can be
predicted from the current end-effector motion, presented
by

CRψ̂M (t + ∆t) =CR ψM (t) + CRψ̇M∆t. (25)

CRψ̇M∆t is the changing extent from the current pose to
the next. We consider that the recognition ability will be
improved by using Eq. (25) to predict the future pose of
the target based on the relative motion from the camera
to the object. And the recognition will be robust to the
motion of manipulator itself.
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4. 3D MEASUREMENT METHOD
4.1 Kinematics of Stereo-Vision

We utilize perspective projection as projection trans-
formation. The coordinate systems of left and right cam-
eras in Fig. 2 are ΣCR and ΣCL, and image coordinate
systems ΣIR and ΣIL. A point i on the target can be de-
scribed using these coordinates and homogeneous trans-
formation matrices. At first, a homogeneous transforma-
tion matrix from ΣCR to ΣM is defined as CRT M . And
an arbitrary point i on the target object in ΣCR and ΣM

is defined CRri and Mri. Then CRri is,

CRri = CRT M
Mri. (26)

Where Mri is predetermined fixed vectors. Using a ho-
mogeneous transformation matrix from ΣW to ΣCR, i.e.,
W T CR, then W ri is got as,

W ri = W T CR
CRri. (27)

The position vector of i point in right image coordinates,
IRri is described by using projection matrix P of camera
as,

IRri = P CRri. (28)

By the same way as above, using a homogeneous trans-
formation matrix of fixed values defining the kinematical
relation from ΣCL to ΣCR, CLT CR, CLri is,

CLri = CLT CR
CRri. (29)

As we have obtained IRri, ILri is described by the fol-
lowing Eq. (30) through projection matrix P .

ILri = P CLri (30)

Then position vectors projected in the ΣIR and ΣIL of
arbitrary point i on target object can be described IRri

and ILri. Here, position and orientation of ΣM based on
ΣCR has been defined as CRψM . Then Eq. (28), Eq.
(30) are rewritten as,{

IRri = fR(CRψM , Mri)
ILri = fL(CRψM , Mri).

(31)

Fig. 5 Target object
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This relation connects the arbitrary points on the ob-
ject and projected points on the left and right images
with the variables CRψM . This measurement problem of
CRψM (t) in real time will be solved by consistent con-
vergence of a matching model to the target object by a
“1-Step GA”.

The 3-D model for the target object of a rectangular
block is shown in Fig. 3. The set of coordinates inside
of the block is depicted as Sin, which is composed of
each surfaces Sin,k(k = 1, 2, · · ·, n), the outside space
enveloping Sin is denoted as Sout, and the combination is
named as S. Then, the set of the points of solid searching
model S consisted of Sin and Sout, which are projected
onto the two dimensional coordinates of left camera are
expressed as,

SL,in(CRψM ) =
m∑

k=1

SL,in,k =
m∑

k=1

{
ILri ∈ ℜ2

∣∣ ILri =

fL(CRψM ,Mri),Mri∈Sin,k ∈ℜ3
}

(32)

SL,out(CRψM ) =
{
ILri ∈ ℜ2

∣∣ ILri = fL(CRψM ,Mri),
Mri ∈ Sout ∈ ℜ3

}
(33)

where m<n denotes the number of the visible surfaces.
The left searching model projected to left camera coordi-
nates is shown in Fig. 4(a). The area composed of SL,in

and SL,out is named as SL. The above defines only the
left-image searching model, the right one is defined in the
same way and the projected searching model is shown in
Fig. 4(b).

4.2 Model Definition
Here, we define evaluation function to estimate how

much the moving solid model S defined by CRψM lies
on the target being imaged on the left and right cam-
eras. The input images will be directly matched by the
projected moving models SL and SR, which are located
by only CRψM as described in Eq. (33) that includes
the kinematical relations of the left and right camera
coordinates. Therefore, if the camera parameters and
kinematical relations are completely accurate, and the
solid searching model describes precisely the target ob-
ject shape, then the SL,in and SR,in will be completely
lies on the target reflected on the left and right images,
provided that true value of CRψM is given.

To search for the target object in the images, the
surface-strips model shown in Fig. 4 and its color in-
formation are used. It is easy to understand that the
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color can be limited only by hue value of the HSV color
system as shown in Fig. 6. Let therefore bk, (k =
1, 2, · · · , n) denote the hue value of the color in Sin,k

surface of the target object. An example of the target
object is shown in Fig. 5 which is a rectangular solid
block(100mm × 150mm × 200mm) with symmetrical
colored surfaces. So here S1 is red then we have b1 = 0,
in the same way, S2 is green then b2 = 120, S3 is blue
then b3 = 240, the other surfaces are symmetrical so
b4 = 0, b5 = 120, b6 = 240.

Let h(ILri) (or h(IRri)) denote the hue value at the
image position ILri(or IRri). Then the evaluation func-
tion of the left moving surface-strips model is given as,

FL(CRψM ) =
1
H

m∑
k=1

{
∑

ILri∈SL,in,k(CRψM )

δ(h(ILri)−bk)

−
∑

ILri∈SL,out(CRψM )

δ(h(ILri) − bk)}

where δ is the Kronecker delta function defined as

δ(n) =
{

1, (n = 0)
0, (n ̸= 0). (34)

Here H =
∑m

k=1 nk, nk represents the number of the
searching points in SL,in,k. It is a scaling factor that nor-
malized FL(CRψM ) ≤ 1. In the case of FL(CRψM ) <
0, FL(CRψM ) is given to zero. The first part of this func-
tion expresses how much each color area of SL,in defined
by CRψM lies on the target being imaged on the left and
right cameras. And the second part is the matching de-
gree of its contour-strips. The difference between the in-
ternal surface and the contour-strips of the surface-strips
model can make the estimation more sensible, especially
in distance recognition between the target to the cameras
which determine the size of the flat models. The right
one is defined in the same way. Then the whole evalua-
tion function is given as

F (CRψM ) = (FL(CRψM ) + FR(CRψM ))/2. (35)

Equation (35) is used as a fitness function in GA process.
When the moving searching model fits to the target object
being imaged in the right and left images, then the fitness
function F (CRψM ) gives maximum value.

Therefore the problem of finding a target object and
detecting its 3D pose can be converted to searching

(b)(b)(b)(b)(a)(a)(a)(a)

Fig. 8 (a)Simulation experiment system created by
OpenGL. (b) coordinate systems of simulation exper-
iment

CRψM that maximizes F (CRψM ). We solve this op-
timization problem by GA whose gene representing pos-
sible pose solution CRψGA.

Using Eq. (25), the pose of the individuals CRψGA in
the next generation can be predicted based on the current
pose, presented by

CRψ̂
i+1

GA =CR ψi
GA + CRψ̇CR,M∆t. (36)

The recognition system of the proposed method is shown
in Fig. 7. We consider that the recognition ability will
be improved by Eq. (equ18) to move all the individuals
to compensate the influence of the motion of the camera.
So the recognition will be robust to the motion of robot
itself.

5. SIMULATION EXPERIMENT OF
RECOGNITION

To verify the effectiveness of the proposed motion-
feedforward recognition method, we have conducted the
simulation experiment to recognize a rectangular solid
block with colored surfaces introduced in section 3.

The simulation experiment is performed under a soft-
ware ”Open GL”. Here, we create a manipulator which is
the same as an actual 7-link manipulator namely “PA-10”
robot, shown in Fig. 8. Two cameras are mounted on the
robot end-effector.

5.1 Simulation experiment
In this simulation experiment, two kinds of motion are

given to the robot end-effector while recognizing a mov-
ing target object’s 3D pose (6DOF), as shown in Fig. 9.
The motion of the target object given by Eq. (2), (13) is

θ = 15sin(ωot), k = [0, 0, 1]T , (37)

W ϵM = sin(θ/2)k, (38)

and the other parameters of the target object is un-
changed. Here ωo represents the frequency of target
object’s motion. In this experiment, we fixed ωo =
0.125[rad/s]. Let ω represents the frequency of end-
effector’s motion. If the robot is static, then ω =
0[rad/s]. Fig. 10 shows the recognition result of the
rotating target object when ω = 0. Fig. 10(a) shows the
recognition result of position x, y, z compared with the
desired position (in ΣCR), where the desired position is
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Fig. 10 Simulation result by “1-step GA ” under ω =

0[rad/s] (no motion). (a) Recognition result of po-
sition x, y, z compared with the desired position (in
ΣCR). (b) Recognition result of orientation ϵ1, ϵ2, ϵ3
compared with the desired position (in ΣCR).

depict in white lines. Fig. 10(b) shows recognition result
of orientation ϵ1, ϵ2, ϵ3 compared with the desired orien-
tation(in ΣCR). In the same way, the desired orientation
is depict in white lines. It can be found that only “1-step
GA ” is enough to track it well since the motion of the
target object is slow and not complicated.

To evaluate the effectiveness of the proposed motion-
feedforward recognition method, we compare the recog-
nition results using “1-step GA ” with that using “1-step
GA + FF. ” under two robot’s motions respectively as fol-
lows ( “FF. ”represents the motion-feedforward recogni-
tion method).

(1) Recognition under motion ”A”: given position
changing of end-effector (shown in Fig. 9(a)).

In this case, the shuttle motion in y axis of ΣW

is given to the robot end-effector with frequency
ω = 0.125[rad/s]. The initial pose of the end-
effector is shown in Fig. 8(b) defined as W ψe0 =
[xe0, ye0, ze0,

W Qe0]T , where W Qe0 = [ϵ1e0, ϵ2e0, ϵ3e0].
The desired motion track is given as

W yd = ye0 + 0.1sin(ωt), (39)

and the other parameters keep their initial values. The
motion of the end-effector starts with known initial tar-
get’s pose. It means the searching model possesses true
values at t = 0.

When the end-effector is moving, the motion of the
target object in the image includes both the real motion
of the target and the relative motion with respect to the
camera’s. So the motion become complicated and the
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Fig. 11 Simulation result under motion “A” by “1-step

GA ” under ω = 0.125[rad/s]. (a), (b) is the same
meaning as that in Fig. 10
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Fig. 12 Simulation result under motion “A” by “1-step

GA + FF. ” under ω = 0.125[rad/s]. (a), (b) is the
same meaning as that in Fig. 10

(a) (b)
Fig. 13 Simulation result under motion “A” by “1-step

GA ” under ω = 0.25[rad/s]. (a), (b) is the same
meaning as that in Fig. 10

(a) (b)
Fig. 14 Simulation result under motion “A” by “1-step

GA + FF. ” under ω = 0.25[rad/s]. (a), (b) is the
same meaning as that in Fig. 10

(a) (b)
Fig. 15 Simulation result under motion “A” by “1-step

GA ” under ω = 0.5[rad/s]. (a), (b) is the same
meaning as that in Fig. 10

(a) (b)
Fig. 16 Simulation result under motion “A” by “1-step

GA + FF. ” under ω = 0.5[rad/s]. (a), (b) is the
same meaning as that in Fig. 10
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Fig. 17 Conclusion of simulation under motion “A”

(a) (b)
Fig. 18 Simulation result under motion “B” with “1-step

GA ” under ω = 0.125[rad/s]. (a), (b) is the same
meaning as that in Fig. 10

(a) (b)
Fig. 19 Simulation result under motion “B” with “1-step

GA + FF. ” under ω = 0.125[rad/s]. (a), (b) is the
same meaning as that in Fig. 10

target object will be difficult to recognize. Fig. 11 shows
the simulation result only by “1-step GA ” under position
shuttle motion ω = 0.125[rad/s]. Without the feedfor-
ward compensation, the “1-Step GA” can not track all the
six variables precisely, even though the correct initial val-
ues are given. Compared with Fig. 11, Fig. 12 shows the
simulation results by “1-step GA + FF. ” under the same
motion of the robot end-effector. It shows that the simu-
lation result in Fig. 12 always overlap the real 3D pose
which verifies that the motion-feedforward method works
well.

The same simulation is conducted under ω =
0.25[rad/s]. The recognition result without using feed-
forward recognition method is shown in Fig. 13, tracking
of the target for GA became more difficult when the speed
of the end-effector gets quicker, which caused GA’s con-
vergence speed is not faster than the target speed relative
to the camera. However, using feedforward recognition
method, the data shown in Fig. 14 indicates the models
kept matching the target well. When the velocity of the
end-effector gets more quicker, ω = 0.5[rad/s], GA lost
the target soon, as shown in Fig. 15. On the other hand, it
can be found in Fig. 16 that the recognition result always
overlap the real 3D pose even under such a high-speed
moving of the robot manipulator.

(a) (b)
Fig. 20 Simulation result under motion “B” with “1-step

GA ” under ω = 0.25[[rad/s]. (a), (b) is the same
meaning as that in Fig. 10

(a) (b)
Fig. 21 Simulation result under motion “B” with “1-

step GA + FF. ” under ω = 0.25[rad/s]. (a), (b) is
the same meaning as that in Fig. 10

Here, we use the mean value of the fitness function F̄
and the root-mean-square value of the error of 3D pose
∆̃ψ from 0s to 72s to evaluate the recognition ability. F̄
is given by

F̄ =
1
n

(F (ψt1) + F (ψt2) + · · · + F (ψtn
)). (40)

Let ∆ψ describes the error of 3D pose, which is defined
as the differece between the desired value of the rec-
ognized value, ∆ψ = [∆x,∆y, ∆z, ∆ϵ1, ∆ϵ2,∆ϵ3]T .
Then the root-mean-square value of ∆ψ is given by

∆̃ψ = [∆̃x, ∆̃y, ∆̃z, ∆̃ϵ1, ∆̃ϵ2, ∆̃ϵ3]T

=

√
1
n

(∆ψt1
2 + ∆ψt2

2 + · · · + ∆ψtn

2).
(41)

It is obvious that high value of F̄ and small value of ∆̃ψ
represent good recognition. Here, we use milimeters to
measure position. When using quaternion to express the
orientation of an object, no unit, just values. Suppose
the object rotates 1[deg] around x axis, we can calculate
ϵ1 = 0.008, ϵ2 = 0, ϵ3 = 0 based on the quaternion
definition, corresponding to the same orientation. Like
this, we can estimate approximately that around which
axis, how much [deg] the error of orientation is.

Fig. 17 shows F̄ and ∆̃ψ of each situation we
have discussed above. We can see that using only
“1-step GA ”, F̄ gets lower and ∆̃ψ gets bigger (to
about 35[mm],12[deg]) along with ω changing from 0
to 0.5[rad/s]. By “1-step GA + FF.”, the end-effector’s
motion has been compensated completely, even the end-
effector moves faster and faster, both F̄ and ∆̃ψ are not
changed much (about 3[mm],1[deg]). It is confirmed that
using motion-feedforward recognition method, the recog-
nition in a hand-eye system is the same with that in a
fixed-camera system.

(2) Recognition under motion “B”: given orientation
changing of end-effector (shown in Fig. 9(b)). Here, the
orientation changing of end-effector is defined as the mo-



(a) (b)
Fig. 22 Simulation result under motion “B” with “1-

step GA ” under ω = 0.5[rad/s]. (a), (b) is the same
meaning as that in Fig. 10

(a) (b)
Fig. 23 Simulation result under motion “B” with “1-

step GA + FF. ” under ω = 0.5[rad/s]. (a), (b) is the
same meaning as that in Fig. 10
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Fig. 24 Conclusion of simulation under motion “B”

tion in a circle with a fixed distance to the target and keep-
ing the eye-line (z axis of ΣCR) passes the center of the
target. The shuttle motion looking the target from the left
side to the right side is given to the end-effector under
ω = 0.125[rad/s]. The desired motion track is given as

θ = 15sin(ωt), (42)
W xd = xe0 + d ∗ (1 − cosθ), (43)
W yd = −(ye0 + d ∗ sinθ), (44)
W zd = ze0, (45)

e0Qd = {e0ηd,
e0 ϵd} = {cosθ

2
, 0, sin

θ

2
, 0},(46)

W Qd = W Qe0 ∗ e0Qd. (47)

The change of W xd,
W yd is very small, almost 0. The

motion of the end-effector also starts with known initial
target’s pose.

In the same way as the previous experiment, Fig. 18
shows the recognition result under orientation shuttle mo-
tion of end-effector using only “1-step GA ” . Fig. 19
shows the simulation result using “1-step GA + FF.” un-
der the same motion of the robot end-effector. Also, It
can be found the motion-feedforward method gave good
prediction of the target’s 3D pose in ΣCR.

The same simulation is also conducted under ω =
0.25[rad/s] (Fig. 20, 21) and ω = 0.5[rad/s] (Fig. 22,

23) respectively. Tracking of the target for GA became
more difficult when the speed of the end-effector gets
quicker. In the case of ω = 0.5[rad/s], the target is lost
soon. However, using feedforward recognition method,
in both cases the target is recognized well all the time.
Also, Fig. 24 shows a conclusion of simulation under mo-
tion “B”, which verifies the proposed method leads to a
robustly accurate recognition even under high-speed mo-
tion.

6. CONCLUSION
We have proposed a 3D pose measurement method

which utilizes an evolutionary recognition technique of
GA and a fitness evaluation based on a matching stereo
model whose pose is expressed by unit quaternion. A
proposed motion-feedforward compensation method is
confirmed that can improve the dynamics of recognition.
Simulation results have been verified the effectiveness of
the proposed method to recognize the pose of a target ob-
ject along with two kinds of motion of the end-effector.

As future research, we will apply this method to visual
servoing task. We are looking forward to see the stability
of visual servo system can be improved since the robot
is able to distinguish what is the real motion of the target
and what is a fiction motion just comes from the camera.
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